General Mathematics Review, Linear Algebra Overview, and Using Python for Linear Algebra

Julie Butler

・ロト ・ 同ト ・ 日ト ・ 日

SQ (V

Disclaimer: You will not have to do *much* math by hand in this course, but it is good to know how to do some basic operations and what the terminology means.

Sar

Scalars

・ロト ・日 ト ・ ヨ ト ・ ヨ ト

 \exists

590

Scalars

- A scalar is just a number, what we are use to dealing with in math.
- Scalars can have a decimal place or be a whole number (called an integer).

SQA

- Scalars can be greater than zero (positive) or less than zero (negative)
- Examples:
 - ► 5
 - 6.7292
 - ► -8.1

Arithmetic with Scalars

- Scalars can have four basic arithmetic operators performed on them: addition, subtraction, multiplication, and division.
 - Order does not matter for addition and multiplication, but does matter for subtraction and division.

SQA

Example: Give a = 5 and b = 2, find:

Factoring and Distribution

- Consider the scalars a, b, c:
 - ▶ If they are arranged as ab+ac, then since both terms of the sum have the same scalar (a) you can *factor* it out: a(b+c)
 - Implicit multiplication
 - ▶ If they are arranged as (a+b)(a-c) then we can *distribute* the first part of the term (a+b) to both parts of the second term.
 - ▶ (a+b)a (a+b)c
 - We can then *distribute* the a or the c to both scalars in parentheses
 - $aa + ab ac + bc = a^2 + ab ac + bc$ (exponents)
 - Note that we could also have used FOIL here (First, Outer, Inner, Last)

A = A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

200

Scalars in Python

```
# Defining scalars (as floats, not ints)
a = 5.0
b = 4.0
# Addition, Subtraction, Multiplication, Division
add = a+b
sub = a-b
mul = a*b
div = a/b
print("Scalar Math:", add, sub, mul, div)
# Multiplication with Parentheses
# Multiplication is not implicit.
mul_paren = (a+b)*(a-b)
print("Multiplication with Partentheses:", mul_paren)
```

- 4 日 1 4 H 1 4 H

Complex Numbers

- ▲ロ > ▲ 国 > ▲ 国 > ▲ 国 > 今 Q @

Complex Numbers

 A complex number has both a real part (a) and an imaginary part (b): z = a+ib

・ロット (日マット)

SQA

- \blacktriangleright i: the imaginary number $i = \sqrt{-1}$
- Note that the imaginary part is just b, not ib.
- Example: Find the real and imaginary parts of the following numbers.

Arithmetic with Complex Numbers

Consider the complex numbers x = a+ib and y = c+id
 Addition and Subtraction: x ± y = (a ± c) + i(b ± d)
 Add/subtract the real parts and then add/subtract the imaginary parts
 Multiplication: xy = (a+ib)(c+id) = ac + iad + ibc + i(i)bd = (ac-bd) + i(ad+bc)
 FOIL two imaginary numbers to multiply

- Note that $i * i = \sqrt{-1}\sqrt{-1} = (-1)^2 = -1$
- Example: If x = 2-3i and y = 4+i, find x+y, x-y, and xy.

A = A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

SQA

Complex Conjugate

The complex conjugate of a complex number z is denoted as z* and is found by negating the imaginary part of z
 If z = a+ib then z* = a-ib

・ロット (日マット)

SQ (V

Example: If z = 5+2i, find z^* .

Norm or Modulus

The modulus squared of a complex number (denoted as |z|²) is just the number times its complex conjugate.

$$zz^* = |z|^2 = (a+ib)(a-ib) = a^2 - iab + iab - i(i)b^2 = a^2 + b^2$$

- The modulus (or norm) is just the square root of the modulus squared: $|z| = \sqrt{a^2 + b^2}$
- The modulus and modulus squared of a complex number is always a real number.
- Example: If z = 4+3i, find the modulus and the modulus squared.

< ロ > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 0 < 0 <</p>

Complex Numbers in Python

- Complex numbers are built into Python, but you denote the imaginary number, i, with a j instead
- Note that because we defined the numbers to be complex, it does not remove the imaginary term, even when it's zero

```
import numpy as np
# Define a complex number
z = 4+3i
print("Complex Number:", z)
# Find the complex conjugate
z conj = z.conjugate()
print("Complex Conjugate:", z conj)
# Find the modulus and modulus squared
# Note that the modulus and modulus squared are still
# complex numbers
z mod squared = z*z conj
z mod = np.sqrt(z mod squared)
print("Modulus Squared and Modulus:", z mod squared, z mo
# Basic Arithmetic
x = 1+2i
v = 3 - 4i
print("Complex Number Math:", x+v, x-v, x*v)
```

イロト イポト イヨト イヨト

SQA

Vectors, Bras, Kets (Dirac Notation)

・ロト・日・・日・・日・・日・・

Vectors

A vector is a one-dimensional structure of numbers arranged in either a row or a column.

$$\vec{a} = \begin{bmatrix} 1 & 2 & 3 \\ \vec{b} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

SQA

Each number in a vector is called an *element*, the number of elements is the size/length/rank of the vector
 Elements can be real or imaginary

Elements can be real or imaginary

Magnitude and Unit Vectors

- A vector has a size and a direction.
- The size of a vector is called its magnitude, calculated by summing the square of all the elements then taking the square root.
 - Example: $\vec{a} = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$. Find a (also denoted as $|\vec{a}|$), the magnitude of \vec{a}
- The direction of a vector is denoted by its unit vector, found by dividing the vector by its magnitude.

4 日 × 4 同 × 4 三 × 4 三 ×

200

- Example: $\vec{a} = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$. Find \hat{a} , the unit vector of \vec{a} .
- Note that the magnitude of a unit vector is 1.
- Note that $|\vec{a}|\hat{a} = \vec{a}$

Arithmetic with Vectors

- If you want to add or subtract two vectors, just add or subtract their corresponding components:
- Example: $\vec{a} = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$ and $\vec{b} = \begin{bmatrix} 4 & 5 & 6 \end{bmatrix}$. Find a+b and a-b.
- The vectors must be the same length to be added or subtracted.
- You can multiply or divide a vector by a scalar if you perform that operation on every element of the vector.

A = A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

200

- Example: $\vec{a} = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$ and c = 10. Find ca and a/c.
- Note that you **cannot** divide by a vector.

Dot Products

There are two ways to "multiply" vectors; the first is called the dot product (also called the inner product and the scalar product)
Multiple elements in like locations and then add them all together
Example: a = [1 2 3] and b = [4 5 6]. Find a ⋅ b.
Note that the result of calculating a dot product is a scalar
Note that a ⋅ b = |a||b|cosθ, where θ is the angle between the two vectors

A = A = A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

500

Cross Products

- The other way to "multiply" vectors is using a cross product, these are a bit complicated to calculate by hand so we won't do that in this course.
 - However, note that $|\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| sin\theta$.
- A cross product will produce a vector which is perpendicular to both vectors.

- ロ ト - 4 目 ト - 4 目 ト

500

Bras and Kets (Dirac Notation)

- In mathematics, vectors will be represented as a, **a**, or \vec{a} , almost always with a lowercase letter.
- ▶ In quantum mechanics, we use a slightly different notation
 - Greek letters: $\alpha, \beta, \phi, \psi$
 - Ket: $|\psi
 angle \longrightarrow$ always a column vector
 - \blacktriangleright Bra: $\langle \psi | \longrightarrow$ always a row vector
- A ket can be transitioned into a bra by turning it into a row vector and taking the complex conjugate of each element:
 - Example:

$$\begin{split} |\psi\rangle &= \begin{bmatrix} 2-5i\\ 6i\\ 3 \end{bmatrix} \\ \langle\psi| &= \begin{bmatrix} 2+5i & -6i & 3 \end{bmatrix} \\ \overset{\bigcirc}{=} \vdots & \overset{\bigcirc}{=} \vdots & \overset{\bigcirc}{=} \vdots & \overset{\bigcirc}{=} \cdots & \overset{\odot}{=} \cdots & \overset{\bigcirc}{=} \cdots & \overset{\bigcirc}{=} \cdots & \overset{\odot}{=} \cdots & \overset{\circ}{=} \cdots & \overset{\odot}{=} \cdots & \overset{\circ}{=} \cdots$$

Dirac Notation Continued

- \blacktriangleright A bra and a ket written together form a bracket: $\langle \phi | \psi \rangle$
 - A bracket is equivalent to performing an inner product (dot product)

Example:

$$\begin{aligned} \langle \phi | &= \begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \\ |\psi\rangle &= \begin{bmatrix} 2-5i \\ 6i \\ 3 \end{bmatrix} \end{aligned}$$

 $\langle \phi | \psi \rangle = 1(2-5i) + 2(6i) + 3(3) = 2 - 5i + 12i + 9 = 7i + 11$

Note that we typically what bras and kets to have a magnitude of 1, so $\langle\psi|\psi\rangle=1$

```
Vectors in Python
      import numpy as np
      # Define vectors as Numpy arrays
      a = np.arrav([1,2,3])
      b = np.array([4,5,6])
      c = 10
      # Arithmetic with Vectors
      add = a+b
      sub = a-b
      mul = c*a
      print("Vector Math:", add, sub, mul)
      # Dot product two ways
      dot1 = np.dot(a,b) #Order is important
      dot2 = a.dot(b) # Order is important
      print("Dot Product:", dot1, dot2)
      # Cross product
      cross = np.cross(a,b)
      print("Cross Product:", cross)
      # Magnitude and unit vector
      mag = np.linalg.norm(a)
      unit_vector = a/mag
      unit vector mag = np.linalg.norm(unit vector)
```

900

Matrices

<ロ> < 団> < 団> < 三> < 三> < 三</p>

Matrices

Matrices are two-dimensional structures where each element can be a real or imaginary number

The width and height can be the same (square matrix) or different. We will mostly deal with square matrices

Example:

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

・ロット (日マット)

SQA

Arithmetic with Matrices

- Matrices add and subtract just like vectors (do the operations to like elements), and can be multiplied or divided by a scalar like vectors.
- Example: Given the following matrices and c = 10, find A+B, A-B, cA and A/c.

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$
$$B = \begin{bmatrix} 9 & 8 & 7 \\ 6 & 5 & 4 \\ 3 & 2 & 1 \end{bmatrix}$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

SQA

Matrix Multiplication and Commutator

Two matrices can be multiplied together but this process is tedious to do by hand so we will use Python or other solvers
In general, AB ≠ BA, or phrased another way, AB - BA ≠ 0
We can define the commutator of two matrices: [A,B] = AB - BA
if [A,B] = 0 (meaning AB = BA) we say that A and B commute

- ロ ト - 4 目 ト - 4 目 ト

500

Arithmetic with Matrices and Vectors

 You cannot add or subtract vectors or matrices, but you can multiply a vector and a matrix. The result will be a vector
 This again is a bit tedious to do by hand so we will use Python or other solvers

・ロット (日マット)

SQA

Transpose, Adjoint, Conjugate, and More

Consider the matrix

$$A = \begin{bmatrix} 1 & 2i & 3\\ 4+i & 5 & 6\\ 7 & 8 & 9-3i \end{bmatrix}$$

- ► The transpose of A, A^T , is found by switching the rows and columns.
- The complex conjugate of A, A^* is found by taking the complex conjugate of every element.
- ► The adjoint of a matrix, (A^T)* = A[†] is found by taking the transpose and the complex conjugate of a matrix If A = A[†] then the matrix is said to be *Hermitian*

nan

Dirac Notation

Matrices are not represented differently in Dirac notation.
 A|ψ⟩ is a matrix multiplied by a vector (gives a vector)
 ⟨φ|A|ψ⟩ is a vector multiplied by a matrix multiplied by a vector

・ロット (日マット)

SQA

Eigenvalues and Eigenvectors

- Eigenvalues (scalars) and eigenvectors are special values and vectors that each matrix has
 - The eigenvalue, λ and the eigenvector, x, solve the equation $Ax = \lambda x$
- You can think of eigenvalues as the "roots" of the matrix
- Finding these by hand can be complicated, we will use Python or other solvers

SQA

Matrices in Python

```
import numpy as np
# Matrices are defined as two-dimensional Numpy arrays
A = np.array([[1,2,3], [4,5,6], [7,8,9]])
B = np.array([[9.8,7], [6.5,4], [3.2,1]])
# Define a vector
x = np.array([2,4,6])
# Define a scalar
c = 10
# Matrix addition and subtraction
add = A + B
sub = A - B
print("Matrix Addition:", add)
print("Matrix Subtraction:", sub)
print()
# Matrix-matrix multiplication
# Do not use the * symbol!!
mull = A@B
m_{11}12 = R@A
commutator = mull - mul2
print("Matrix Multiplication 1:".mul1)
print("Matrix Multiplication 2:", mul2)
print("Commutator:", commutator)
print()
```

```
# Matrix-Vector Multiplication
mu13 = A0x
print("Matrix-Vector Multiplication:", mul3)
print()
# Matrix-Scalar Multiplication
# Use the * symbol!!
mu14 = c*B
print("Matrix-Scalar Multiplixation:", mul4)
print()
# Transpose and Adjoint
transpose = A.T
adjoint = np.conj(B).T
print("Transpose:", transpose)
print("Adjoint:", adjoint)
print()
# Eigenvalues and Eigenvectors
# Note that the eigenvectors of A are the columns of the
# eigenvectors
eigenvalues, eigenvectors = np.linalg.eig(A)
print("Eigenvalues:",eigenvalues)
print("Eigenvectors:", eigenvectors)
                                                     QR
```