Quantum Mechanics Crash Course (Part 1): Concepts and Statistics

Julie Butler

What Makes Up Matter?

- ▶ All matter is made up of atoms and molecules
	- ▶ Atoms are made up of electrons and a nucleus
	- ▶ The nucleus is made up of protons and neutrons
	- ▶ Protons and neutrons are made up of up and down quarks
- ▶ Quantum mechanics is the study of things so small we cannot see them, classical physics no longer applies.
- ▶ Quantum mechanical systems are not deterministic, they are probabilistic, the results of experiments are statistically random (but still describable!)

Lights and Photons

- ▶ In classical physics we think of light as a wave, but in quantum physics we consider it to be made up of particles called photons
- ▶ We have proof of this!
	- ▶ Photoelectric effect: Light can cause a current in a wire (by freeing electrons) but only certain wavelengths of light
		- \triangleright Does not depend on intensity

Wave-Particle Duality

- \blacktriangleright Light has a wave-particle duality \longrightarrow it behaves like a wave but it also behaves like a particle
- ▶ This is also true for things so small that quantum mechanics applies to them \longrightarrow they behave like particles but also have properties of a wave.
- ▶ We call this wave-particle duality.
	- ▶ The consequence of this is the probabilistic nature of quantum mechanics: what is the location of a wave?

Interlude: Probability and Statistics

- ▶ Since quantum mechanics is probabilistic, we need to have a quick discussion of probability and statistics
- ▶ Discrete vs. Continuous
	- ▶ Discrete variables: the data can only have certain values
	- ▶ Continuous variables: the data can have any value
- ▶ We define the total number as:

$$
N = \sum_{j=0}^{\infty} N(j),
$$

where $N(j)$ is the number of instances of a certain event.

Discrete Variables Example

- ▶ three people aged 16
- ▶ two people aged 22
- ▶ two people aged 24
- \blacktriangleright five people aged 25
- ▶ Then we can define the numbers as:
	- \blacktriangleright N(14) = 1
	- \triangleright N(15) = 1
	- \triangleright N(16) = 3
	- \triangleright N(22) = 2
	- \blacktriangleright N(24) = 2
	- $N(25) = 5$

Probability

▶ Discrete: the probability of event j occurring is:

$$
P(j) = \frac{N(j)}{N}
$$

▶ Note that $\sum_{j=0}^{\infty} P(j) = 1$

▶ Continuous: the probability that an event will occur between a and b is:

$$
P_{ab} = \int_a^b \rho(x) dx
$$

 \blacktriangleright $\rho(x)$ is the probability density \longrightarrow the probability of getting x ▶ Note that $\int_{-\infty}^{\infty}$ $\int_{-\infty}^{\infty} \rho(x) dx = 1$

イロト (母) イミ) イミ) 三ミーの久々

Discrete Variables Example

- \blacktriangleright N(14) = 1
- \blacktriangleright N(15) = 1
- \triangleright N(16) = 3
- \triangleright N(22) = 2
- \triangleright N(24) = 2
- \blacktriangleright N(25) = 5
- ▶ We can define the probabilities
	- as:
	- \blacktriangleright P(14) = 1/14 \approx 0.071
	- \blacktriangleright P(15) = 1/14 \approx 0.071
	- ▶ P(16) = $3/14 \approx 0.214$
	- \blacktriangleright P(22) = 2/14 \approx 0.142
	- \blacktriangleright P(24) = 2/14 \approx 0.142
	- \blacktriangleright P(25) = 5/14 \approx 0.357
- ▶ The most probable age is 25 (the highest probability)

Average (Mean) or Expectation Value

▶ We will denote the average as $\langle \hat{j} \rangle$ (expectation value)

▶ Discrete:

$$
\langle j \rangle = \frac{\sum jN(j)}{N} = \sum_{j=0}^{\infty} jP(j)
$$

▶ Continuous:

$$
\langle x\rangle=\int_{-\infty}^{\infty}x\rho(x)dx
$$

Discrete Variables Example

$$
\begin{aligned} \langle j \rangle &= 14(\frac{1}{14}) + 15(\frac{1}{14}) + 16(\frac{3}{14}) + 22(\frac{2}{14}) + 24(\frac{2}{14}) + 25(\frac{5}{14}) \\ \langle j \rangle &= 21 \end{aligned}
$$

Other Expectation Values

- \blacktriangleright Expectation values other than the average: if you replace j/x in the previous slide with a function, you can find the average value of that function over the given data
- ▶ Discrete:

$$
\langle f(j) \rangle = \sum_{j=0}^{\infty} f(j)P(j)
$$

▶ Continuous:

$$
\langle f(x)\rangle=\int_{-\infty}^{\infty}f(x)\rho(x)dx
$$

Discrete Variables Example

▶ Let's assume we have some simple formula that relates a person's health insurance costs to their age, a:

$$
I = 5a + 7
$$

▶ Then the expectation value for the insurance rate is:

$$
\langle I \rangle = (5(14) + 7)\left(\frac{1}{14}\right) + (5(15) + 7)\left(\frac{1}{14}\right) + (5(16) + 7)\left(\frac{3}{14}\right) + (5(22) + 7)\left(\frac{2}{14}\right) + (5(24) + 7)\left(\frac{2}{14}\right) + (5(25) + 7)\left(\frac{5}{14}\right)
$$

イロト (母) イミ) イミ) 三ミーの久々

 $\langle I \rangle = 112.0$

Standard Deviation

- ▶ Standard Deviation \blacktriangleright We will denote the standard deviation as σ
- ▶ Discrete or Continuous:

$$
\sigma=\sqrt{\langle x^2\rangle-\langle x\rangle^2}
$$

Discrete Variables Example

 \blacktriangleright We previously found that $\langle j \rangle = 21$, so now we have:

$$
\begin{split} \langle j^2 \rangle &= 14^2(\frac{1}{14})+15^2(\frac{1}{14})+16^2(\frac{3}{14})+22^2(\frac{2}{14})+24^2(\frac{2}{14})+25^2(\frac{5}{14}) \\ &\langle j^2 \rangle \approx 459.57 \end{split}
$$

▶ Then we can calculate the standard deviation using $\sigma = \sqrt{\langle x^2 \rangle - \langle x \rangle^2}$

$$
\sigma = \sqrt{459.57 - 21^2} = 4.30
$$

Events and Likelihoods

- ▶ Now that we have the statistics defined, let's work on some new notation
- ▶ Let's consider the results of flipping a quarter, Q. There is a 50% chance of getting heads (H) and a 50% chance of getting tails (T).
- ▶ We will represent the event of flipping a quarter as $|Q\rangle$ as the sum of its possible outcomes $(|H\rangle$ and $|T\rangle)$:

$$
|Q\rangle=\sqrt{\frac{1}{2}}|H\rangle+\sqrt{\frac{1}{2}}|T\rangle
$$

 $\mathcal{A} \ \Box \ \vdash \ \mathcal{A} \ \overline{\mathcal{O}} \ \vdash \ \mathcal{A} \ \overline{\mathcal{C}} \ \vdash \ \mathcal{A} \ \overline{\mathcal{C}} \ \vdash \ \mathcal{A} \ \overline{\mathcal{C}} \ \vdash$

 \equiv \circ \circ

▶ Note that the coefficients have meaning: $|\sqrt{\frac{1}{2}}|^2=0.5$, the probability of each event occurring

► Also note that
$$
|\sqrt{\frac{1}{2}}|^2 + |\sqrt{\frac{1}{2}}|^2 = 1
$$

\n▶ The probabilities must add to 1

Quantum Mechanics Crash Course (Part 1): Concepts and Statistics

Wavefunction

- ▶ In the last slide we created a representation for the events that occur when flipping a quarter
- ▶ We use this same idea when writing an equation to represent a quantum mechanical state, called a *wavefunction* (typically represented as $|\psi\rangle$)
	- ▶ A wavefunction tells you everything that can be known about a quantum mechanical state
	- ▶ You extract the information about the state through mathematical operations like *expectation values* and *standard deviations*
- ▶ We will go into the math more on Monday, but the ket notation should give you a hint of the form

Spin

- ▶ All particles have certain properties which define what type of particle it is: mass and charge
- ▶ Particles of the same type of a property that can change without changing the particle type: spin
	- ▶ *Degree of Freedom*
	- \blacktriangleright Spin can be ± 1 and be in the x, y, and z direction
	- ▶ A qubit can be defined with the z-spin: $up (+1)$ or down (-1)

Figure 1: Bloch Sphere

Spin Up and Spin Down

- ▶ There are several ways to represent spin-up and spin-down quantum states but we will start this class using an intuitive one: \blacktriangleright Spin-up: $|\uparrow\rangle$
	- ▶ Spin-down: $|\downarrow\rangle$
- ▶ Let's consider the following *quantum spin state*

$$
|\psi\rangle=\frac{4}{5}|\uparrow\rangle-\frac{3i}{5}|\downarrow\rangle
$$

Superposition

$$
|\psi\rangle=\sqrt{\frac{4}{5}}|\uparrow\rangle-\sqrt{\frac{3i}{5}}|\downarrow\rangle
$$

- \blacktriangleright The above state is in a superposition of two states: $|\uparrow\rangle$ and $|\downarrow\rangle$ ▶ We can think of it as being simulatineously spin-up and spin-down.
- ▶ Most quantum states we encounter in this class will be a superposition of two or more states
	- ▶ Remember that the coefficients are related to the probabilities of each state

Measurement

- ▶ Any interaction strong enough to measure a quantum mechanical system is strong enough to change it
- ▶ The first measurement of a system *prepares* the system for additional measurements

$$
|\psi\rangle=\frac{4}{5}|\uparrow\rangle-\frac{3i}{5}|\downarrow\rangle
$$

* When the above spin state is measured, it will *collapse* into either | ↑⟩ or $|\downarrow\rangle$ (it will no longer be in a superposition)

Operators and Observables

- ▶ When we measure a quantum state, we say that we are applying an *operator* to the state and obtaining an *observable*.
	- \blacktriangleright For example, the momentum operator is applied to a quatum state and the returned observable is the momentum of the state.
- ▶ Only certain states and observables are possible for a given operator, we will discuss why on Wednesday.

Example: Superposition, Measurement, and State Preparation

An operator \hat{A} , representing observable A, has two normalized states ψ_1 and ψ_2 , with values a_1 and a_2 , respectively. Operator $\hat{B},$ representing observable B, has two normalized states ψ_1 and ψ_2 with values b_1 and $b_2.$ The states are related by

 $\psi_1 = (3\phi_1 + 4\phi_2)/5 \quad \psi_2 = (4\phi_1 - 3\phi_2)/5$

- a. Observable A is measured, and the value a_1 is obtained. What is the state of the system immediately after this measurement?
- b. If B is now measured, what are the possible results, and what are their probabilities?

 $\mathbf{1} \oplus \mathbf{1} \rightarrow \mathbf{1} \oplus \mathbf{1} \rightarrow \mathbf{1} \oplus \mathbf{1} \rightarrow \mathbf{1} \oplus \mathbf{1}$ $\bar{\Xi}$ OQ

Entanglement

- In the previous example, the states of \hat{A} and the states of \hat{B} are *entangled*, what happens to one state will change or affect what happens to the other state.
	- \blacktriangleright Measuring (and thus collapsing) the states of \hat{A} change the probabilities of the measurements of \hat{B}

Uncertainty

- ▶ Certain pairs of observables can be measured together, but only to a set *uncertainity*
	- ▶ Example: position and momentum can be measured together, but only to within $\hbar/2$
		- \blacktriangleright $\sigma_x \sigma_y \geq \hbar/2$
		- ▶ Increasing the precision of the position measurement decreases the position of the momentum measurement
- ▶ In quantum computing, when we want to measure various attributes of a quantum system, we need to be careful that we are not measuring observables simultaneously if they have an *uncertainity principle*

Energy

▶ In quantum mechanics, energy is a *quantized* observable: it can only have certain values

 \blacktriangleright Spin is another quantized observable

References and Resources

- ▶ *Quantum Mechanics: The Theoretical Minimum*. Leonard Susskind.
- ▶ *Introduction to Quantum Mechanics*. David J. Griffiths and Darrell F. Schroeter. 3rd. ed.
- ▶ If You Don't Understand Quantum Physics, Try This! (Video)