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Mathematical Methods for Quantum Mechanics

P There are two methods to perform calculations on a mathematical
system:
1. Wave Mechanics: wavefunctions are functions, operators are

differential equations, most calculations involve integration
P Modern Physics and most of Quantum Mechanics

2. Matrix Mechanics: wavefunctions are vectors, operators are
matrices, most calculations involve linear algebra
P Some of Quantum Mechanics and this course

P The two methods are equivalent BUT one is general easier or
better suited for a given application
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Wavefunctions (Quantum Mechanical States) are Vectors

P In matrix mechanics wavefunctions, or quantum mechanical states,
are represented by vectors using bra-ket notation: |¢)

P The vectors must be normalized (meaning that they have a

magnitude of 1): 1/(¢|¢)) = 1 (inner/dot product)

P Example: For each of the below states: (a) find the corresponding
bra vector, (b) normalize the state if it is not already normalized.
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Computational Basis States

P For vectors of length n, the computational basis states are a set of
n vectors of length n that can be used to construct all other
possible vectors — these vectors are called computational basis
states in quantum mechanics because they can be used to create
all quantum mechanical states

P Example: For vectors of length 2 one possible computational basis

is 0) = H and |1) = m (proof in HW1)

P Computational basis states must be orthonormal:
P Orthogonal: (i|j) =0
P Normalized: (ili) =1
P Proof for the length 2 basis in HW1
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Create Any State with a Basis and Superposition

P With a given computational basis, you can create any quantum
mechanical state through superposition

» Example:
=[] =[]+ [

2o+ 3 [0 = 2o+ 3

P Note that the coefficients must follow the rules of probability
(automatically enforced if the original matrix is normalized)
P Based on Friday: if this wavefunction is measured, you will get a

result corresponding to either |0) or |1). These are the only two

possible options. I
=] = = £ DA
!
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Operators are Hermitian Matrices

P Operators, which are used to mathematically represent measuring
a system, are represented by Hermitian matrices

Al = (AT) = A

P Example: S measures the spin in the z direction of a particle
2 P p
(generally left in terms of h):

i1 o
52_5[0 —1}
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Operators are Hermitian Matrices (Cont.)

P> Observables of a measurement are determined through an
expectation value (vector-matrix multiplication)

P The expectation value for S, is typically represented as (S.)
P Example: Given [¢)) from the previous slide, find (]S, |1) = (S,)

o <& = = = Dacx
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Observables are Eigenvalues of the Operator

P Given a matrix which describes a certain measurement of a system,
there are only a finite number of observables that can be returned
— the eigenvalues of the operator matrix

P Ex: Consider the following operators, which measure the spin in
the x, y, and z directions:

hio 1 hlo —i hi1 o
Sm:§[1 0] Sy:i[i 0] Sz:i[o —1]

P Each matrix has the same eigenvalues, j:%, corresponding to
spin-up and spin-down in each of the three directions. These are
the only possible outcomes when measuring the spin of a particle

=] = = = £ DA
:
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Observables are Eigenvalues of the Operator (Cont.)

P Note the expectation value could be different than the eigenvalues
of the operator since it is an expected, or average measurement

P Note that the spin matrices minus the factor of % for the Pauli
matrices (o, 0,, and 0.), a computational basis for 2x2 matrices.
These three matrices will appear many times throughout this
course.
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The Role of Eigenvectors

by the corresponding eigenvector.

P If you measure a system and get an observable (eigenvalue) then
you know that the system has collapsed into the state represented

P Remember that eigenvalues and eigenvectors come in pairs
AZ = \T
!
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The Role of Eigenvectors (Cont.)

P Example: Consider the operator to determine the spin of a particle
in the z-direction:

hil 0
%=3 [0 —1}
P It has two eigenvalues: i%. The positive eigenvalue corresponds

to the eigenvector |0) = [1

0] and the negative eigenvalue

corresponds to the eigenvector |1) = [

0
1l
P If you measure the spin in the z direction and get —I—% as your
0).

observable, then you can be certain you collapsed your state into
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Outer Products

product takes two vectors and creates a scalar).

P An outer product takes two vectors and creates a matrix (an inner
P Consider the following two vectors of length 3:

Lo Yo
) = |2, ly) = |1
Lo Ya
lz)(yl is

P The outer product between these two vectors, represented as

ToYs ToYi ToYs
)yl = |71y 197 193
Toly ToYi Tols

[m} = = = E Qe
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Projection Operators

P A useful application of the outer product is in the construction of
projection operators.

P Consider the computational basis states for vectors of length 2
defined in previous slides. We can construct the following
projection operators, typically denoted as P and Q:

]5:|0><0|:[(1) 8] Q=|1><1‘:[8 ?]

P> The projection operator projects out a specific component of a of
a state related to the basis state that was used to the projection
operator.

B Example: Using |t)) define previously, find P|t) and Q[v)).
] = =
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Further Generalizations to Extract Probabilities

P Consider a generic state [¢,) = [

Co|.
¢l
Plyy) = F
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Now consider that

Further Generalizations to Extract Probabilities (Cont.)

and

(01PJbg) = (0lco|0) = <o

(O1Plth) = (0]0){0lbg = (Oltg) = co
P Note that P(]0)) = |c,|?

state |i) when measuring ) is |{i|1))

2.

P The probability of obtaining an observable corresponding to basis
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Time-Independent SchrOdinger's Equation

P An important equation in quantum mechanics is known as the
time-independent Schrodinger’s equation which gives the energy of
a system using the Hamiltonian operator.

Hyp) = E|y)

P Note that the time-independent Schrodinger's equation is an
eigenvalue problem.
P> An important consequence of Schrodinger's equation is that if |1))

is a solution then so is a1)) is a is a complex constant.
P Normalizing a state does not change the system. Always normalize
states before using them!
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Entanglement is Represented as a Tensor Product

P Entanglement between two states is represented with a tensor

product, which will result in a vector longer than the vectors of the
entangled states.

P Consider the two states:

=[] =]

P If |z) and |y) become entangled, then we can represent the
entangled state as the tensor product between the two states:

ZoYo
Z,Y1
)y =1 °
) @) = | 1o
T1Y1
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Example 1

You may solve the following example by hand or use an online linear
algebra calculator like Wolfram Alpha.

Consider a three-dimensional vector space spanned by an orthonormal
basis [1), |2), and |3). States |«) and |3) are given by:

) = i[1) = 22) —i[3), [B) = i[1) +2[3)

P Construct («| and (f] in terms of (1|, (2|, and (3.

P Find («|3) and (B|a) and confirm that (3|a) = («|B8)*. Hints:
What property should the coefficients of |«) and |3) have before
you start this problem? You do not need to know |1), |2), or |3)
but you do need to know the properties of an Qrth%normal basis.
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Example 2

You may solve the following example by hand or use an online linear
algebra calculator like Wolfram Alpha.

The Hamiltonian for a certain three-level system is represented by the

matrix
1 0 O]
H=tw |0 2 0].

0 0 2]
Two other observables, A and B, are represented by the matrices

010 2 0 0
A=X[1 0 0| B=up|0 0 1},
0 0 2 101 0

where w, A, and p are positive, real numbers.

[m] = = =
\
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Example 2 (Cont.)

P What are the possible energies of this three-level system. Consider
the following state:

—1
) =a|3|.
24
P Find a (i.e. normalize the state).

P Compute ()| Aly)) and (1| Bl1)). Are these numbers observables
or averages?

P What is the probability that, when measuring the energy of |¢),
you obtain hw?
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Example 3

algebra calculator like Wolfram Alpha.

You may solve the following example by hand or use an online linear
Suppose a particle is in the state

1
¥) =
and 5,7

1 {1 - 1]
V6 | 2
What are the probabilities of getting +% and

h o -
—3, if you measure S,
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Example 4

You may solve the following example by hand or use an online linear
algebra calculator like Wolfram Alpha
An electron is in the state

w=a[}

P Determine the normalization constant A.

P Find the expectation values of S, S,, and S,.
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