Quantum Mechanics Crash Course (Part 2): Mathematical Formalism

Julie Butler

Mathematical Methods for Quantum Mechanics

- ▶ There are two methods to perform calculations on a mathematical system:
	- 1. Wave Mechanics: wavefunctions are functions, operators are differential equations, most calculations involve integration
		- ▶ *Modern Physics* and most of *Quantum Mechanics*
	- 2. Matrix Mechanics: wavefunctions are vectors, operators are matrices, most calculations involve linear algebra
		- ▶ Some of *Quantum Mechanics* and this course
- ▶ The two methods are equivalent **BUT** one is general easier or better suited for a given application

Wavefunctions (Quantum Mechanical States) are Vectors

▶ In matrix mechanics wavefunctions, or quantum mechanical states, are represented by vectors using bra-ket notation: $|\psi\rangle$

- ▶ The vectors must be normalized (meaning that they have a magnitude of 1): $\sqrt{\langle \psi | \psi \rangle} = 1$ (inner/dot product)
- ▶ Example: For each of the below states: (a) find the corresponding bra vector, (b) normalize the state if it is not already normalized.

$$
|\alpha\rangle = \begin{bmatrix} i \\ 0 \end{bmatrix}
$$

$$
|\psi\rangle = \begin{bmatrix} 3 \\ 4 \end{bmatrix}
$$

Computational Basis States

- ▶ For vectors of length n, the computational basis states are a set of n vectors of length n that can be used to construct all other possible vectors \rightarrow these vectors are called computational basis states in quantum mechanics because they can be used to create all quantum mechanical states
- ▶ Example: For vectors of length 2 one possible computational basis

is
$$
|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}
$$
 and $|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ (proof in HW1)

- ▶ Computational basis states must be orthonormal:
	- \blacktriangleright Orthogonal: $\langle i|j \rangle = 0$
	- ▶ Normalized: $\langle i|i\rangle = 1$
	- ▶ Proof for the length 2 basis in HW1

Create Any State with a Basis and Superposition

- ▶ With a given computational basis, you can create any quantum mechanical state through superposition
- ▶ Example:

$$
|\psi\rangle = \begin{bmatrix} 3/5 \\ 4/5 \end{bmatrix} = \begin{bmatrix} 3/5 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 4/5 \end{bmatrix}
$$

$$
= \frac{3}{5} \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \frac{4}{5} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \frac{3}{5} |0\rangle + \frac{4}{5} |1\rangle
$$

- ▶ Note that the coefficients must follow the rules of probability (automatically enforced if the original matrix is normalized)
- ▶ Based on Friday: if this wavefunction is measured, you will get a result corresponding to **either** $|0\rangle$ or $|1\rangle$. These are the only two possible options.

Operators are **Hermitian** Matrices

▶ Operators, which are used to mathematically represent measuring a system, are represented by Hermitian matrices

$$
A^{\dagger} = (A^T)^* = A
$$

 \blacktriangleright Example: S_z measures the spin in the z direction of a particle (generally left in terms of \hbar):

$$
S_z = \frac{\hbar}{2} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}
$$

Operators are **Hermitian** Matrices (Cont.)

- ▶ Observables of a measurement are determined through an expectation value (vector-matrix multiplication)
	- ▶ The expectation value for S_z is typically represented as $\langle S_z \rangle$.
- ▶ Example: Given $|\psi\rangle$ from the previous slide, find $\langle \psi|S_z|\psi\rangle = \langle S_z\rangle$.

Observables are Eigenvalues of the Operator

- ▶ Given a matrix which describes a certain measurement of a system, there are only a finite number of observables that can be returned \longrightarrow the eigenvalues of the operator matrix
- ▶ Ex: Consider the following operators, which measure the spin in the x , y , and z directions:

$$
S_x = \frac{\hbar}{2} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \quad S_y = \frac{\hbar}{2} \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \quad S_z = \frac{\hbar}{2} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}
$$

 \blacktriangleright Each matrix has the same eigenvalues, $\pm \frac{\hbar}{2}$ $\frac{\hbar}{2}$, corresponding to spin-up and spin-down in each of the three directions. These are the only possible outcomes when measuring the spin of a particle

Observables are Eigenvalues of the Operator (Cont.)

- ▶ Note the expectation value could be different than the eigenvalues of the operator since it is an expected, or *average* measurement
- \blacktriangleright Note that the spin matrices minus the factor of $\frac{\hbar}{2}$ for the Pauli matrices $(\sigma_x, \, \sigma_y,$ and σ_z), a computational basis for 2x2 matrices. These three matrices will appear many times throughout this course.

The Role of Eigenvectors

- ▶ If you measure a system and get an observable (eigenvalue) then you know that the system has collapsed into the state represented by the corresponding eigenvector.
	- ▶ Remember that eigenvalues and eigenvectors come in pairs.

 $A\vec{x}=\lambda\vec{x}$

The Role of Eigenvectors (Cont.)

▶ Example: Consider the operator to determine the spin of a particle in the z-direction:

$$
S_z = \frac{\hbar}{2} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}
$$

It has two eigenvalues: $\pm \frac{\hbar}{2}$ $\frac{\hbar}{2}$ ₋ The positive eigenvalue corresponds to the eigenvector $\ket{0} = \begin{bmatrix} 1 \ 0 \end{bmatrix}$ and the negative eigenvalue corresponds to the eigenvector $|1\rangle = \begin{bmatrix} 0\ 1 \end{bmatrix}$.

If you measure the spin in the z direction and get $+\frac{\hbar}{2}$ $\frac{\hbar}{2}$ as your observable, then you can be certain you collapsed your state into $|0\rangle$.

Outer Products

- ▶ An outer product takes two vectors and creates a matrix (an inner product takes two vectors and creates a scalar).
- \blacktriangleright Consider the following two vectors of length 3:

$$
|x\rangle = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} \quad |y\rangle = \begin{bmatrix} y_0 \\ y_1 \\ y_2 \end{bmatrix}
$$

▶ The outer product between these two vectors, represented as $|x\rangle\langle y|$ is

$$
|x\rangle\langle y| = \begin{bmatrix} x_0 y_0^* & x_0 y_1^* & x_0 y_2^* \\ x_1 y_0^* & x_1 y_1^* & x_1 y_2^* \\ x_2 y_0^* & x_2 y_1^* & x_2 y_2^* \end{bmatrix}
$$

Quantum Mechanics Crash Course (Part 2): Mathematical Formalism

Projection Operators

- ▶ A useful application of the outer product is in the construction of projection operators.
- ▶ Consider the computational basis states for vectors of length 2 defined in previous slides. We can construct the following projection operators, typically denoted as \hat{P} and \hat{Q} :

$$
\hat{P} = |0\rangle\langle 0| = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \quad \hat{Q} = |1\rangle\langle 1| = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}
$$

- ▶ The projection operator *projects* out a specific component of a of a state related to the basis state that was used to the projection operator.
- ▶ Example: Using $|\psi\rangle$ define previously, find $\hat{P}|\psi\rangle$ and $\hat{Q}|\psi\rangle$. $\bar{\Xi}$ $\begin{array}{c} \curvearrowleft \circledcirc \wedge \curvearrowright \end{array}$

Further Generalizations to Extract Probabilities

$$
\sum \text{ Consider a generic state } |\psi_0\rangle = \begin{bmatrix} c_0 \\ c_1 \end{bmatrix}:
$$

$$
\hat{P}|\psi_0\rangle = \hat{P}\begin{bmatrix} c_0 \\ c_1 \end{bmatrix} = \hat{P}(\begin{bmatrix} c_0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ c_1 \end{bmatrix})
$$

$$
= \hat{P}(c_0 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + c_1 \begin{bmatrix} 0 \\ 1 \end{bmatrix}) = \hat{P}(c_0|0\rangle + c_1|1\rangle)
$$

$$
= c_0 \hat{P}|0\rangle + c_1 \hat{P}\rangle = c_0 \hat{P}|0\rangle = c_0|0\rangle
$$

Further Generalizations to Extract Probabilities (Cont.)

Now consider that

$$
\langle 0 | \hat{P} | \psi_0 \rangle = \langle 0 | c_0 | 0 \rangle = c_0
$$

and

$$
\langle 0|\hat{P}|\psi_0\rangle = \langle 0|0\rangle \langle 0|\psi_0 = \langle 0|\psi_0\rangle = c_0
$$

- \blacktriangleright Note that $\mathsf{P}(|0\rangle)=|c_0|^2$
- ▶ The probability of obtaining an observable corresponding to basis state $|i\rangle$ when measuring $|\psi\rangle$ is $|\langle i|\psi\rangle|^2$.

Time-Independent Schr0dinger's Equation

▶ An important equation in quantum mechanics is known as the *time-independent Schrodinger's equation* which gives the energy of a system using the *Hamiltonian* operator.

$$
\hat{H}|\psi\rangle = E|\psi\rangle
$$

- ▶ Note that the time-independent Schrodinger's equation is an eigenvalue problem.
- An important consequence of Schrodinger's equation is that if $|\psi\rangle$ is a solution then so is $a|\psi\rangle$ is a is a complex constant.
	- ▶ Normalizing a state does not change the system. *Always normalize states before using them!*

Entanglement is Represented as a Tensor Product

- ▶ Entanglement between two states is represented with a tensor product, which will result in a vector longer than the vectors of the entangled states.
- ▶ Consider the two states:

$$
|x\rangle = \begin{bmatrix} x_0 \\ x_1 \end{bmatrix} \quad |y\rangle = \begin{bmatrix} y_0 \\ y_1 \end{bmatrix}
$$

If $|x\rangle$ and $|y\rangle$ become entangled, then we can represent the entangled state as the tensor product between the two states:

$$
|x\rangle \otimes |y\rangle = \begin{bmatrix} x_0 y_0 \\ x_o y_1 \\ x_1 y_0 \\ x_1 y_1 \end{bmatrix}
$$

▶ Note that order is important for calculating tensor products. These Quantum Mechanics Crash Course (Part 2): Mathematical Formalism

Example 1

You may solve the following example by hand or use an online linear algebra calculator like Wolfram Alpha.

Consider a three-dimensional vector space spanned by an orthonormal basis $|1\rangle$, $|2\rangle$, and $|3\rangle$. States $|\alpha\rangle$ and $|\beta\rangle$ are given by:

 $|\alpha\rangle = i|1\rangle - 2|2\rangle - i|3\rangle, \quad |\beta\rangle = i|1\rangle + 2|3\rangle$

- ▶ Construct $\langle \alpha |$ and $\langle \beta |$ in terms of $\langle 1 |, \langle 2 |, \rangle$ and $\langle 3 |$.
- **▶** Find $\langle \alpha | \beta \rangle$ and $\langle \beta | \alpha \rangle$ and confirm that $\langle \beta | \alpha \rangle = \langle \alpha | \beta \rangle^*$. **Hints**: What property should the coefficients of $|\alpha\rangle$ and $|\beta\rangle$ have before you start this problem? You do not need to know $|1\rangle$, $|2\rangle$, or $|3\rangle$ but you do need to know the properties of an orthonormal basis. OQ

Example 2

You may solve the following example by hand or use an online linear algebra calculator like Wolfram Alpha.

The Hamiltonian for a certain three-level system is represented by the matrix

$$
H = \hbar \omega \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}.
$$

Two other observables, A and B, are represented by the matrices

$$
A = \lambda \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 2 \end{bmatrix} \quad B = \mu \begin{bmatrix} 2 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix},
$$

where ω , λ , and μ are positive, real numbers. $A \equiv \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 &$

Example 2 (Cont.)

▶ What are the possible energies of this three-level system. Consider the following state:

$$
|\psi\rangle = a \begin{bmatrix} -i \\ 3 \\ 2i \end{bmatrix}.
$$

- ▶ Find a (i.e. normalize the state).
- ▶ Compute $\langle \psi | A | \psi \rangle$ and $\langle \psi | B | \psi \rangle$. Are these numbers observables or averages?
- \blacktriangleright What is the probability that, when measuring the energy of $|\psi\rangle$, you obtain $\hbar\omega$?

Example 3

You may solve the following example by hand or use an online linear algebra calculator like Wolfram Alpha.

Suppose a particle is in the state

$$
|\psi\rangle=\frac{1}{\sqrt{6}}\left[\begin{matrix}1+i\\2\end{matrix}\right]
$$

What are the probabilities of getting $+\frac{\hbar}{2}$ $\frac{\hbar}{2}$ and $-\frac{\hbar}{2}$ $\frac{\hbar}{2}$, if you measure S_z and S_x ?

Example 4

You may solve the following example by hand or use an online linear algebra calculator like Wolfram Alpha

An electron is in the state

$$
|\psi\rangle=A\begin{bmatrix}3i\\4\end{bmatrix}
$$

▶ Determine the normalization constant A.

 \blacktriangleright Find the expectation values of S_x , S_y , and S_z .