R R RRRRRRRRRRRRRRRRBRRRRRRRRRRRRRRRRRRRRRRRRRBRBRBRRBRBRRRERBEERREIESZSEEEDDE.
Part 1: Defining Qubits in Python Part 2: Defining Quantum Gates in Python and Applying Them to Qubits Part 3: Defining a Superposi
0000 00000000 000000000

\

Qubits, Superposition, and Introduction to Qiskit
Julie Butler

=} & = Q¥
'

Qubits, Superposition, and Introduction to Qiskit
R R O R R R R R R R R R R R R R R R R R R R R R R R R R R RRRRRRRRRRRRRRRRRRRRRRRRRRRRDTSTT




R RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRERRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRERRRRRRRRRRRRRRRRRRRRRRRRRRRRRRERRRRRRRRRERRRRRRRRRRRRRRRRRRRRRRRRREEEESDSSEBB©DESEBSSSNN.
Part 1: Defining Qubits in Python Part 2: Defining Quantum Gates in Python and Applying Them to Qubits Part 3: Defining a Superposi
€000 00000000 000000000

\

Part 1: Defining Qubits in Python

=} & = Q¥
'

Qubits, Superposition, and Introduction to Qiskit
R R O R R R R R R R R R R R R R R R R R R R R R R R R R R RRRRRRRRRRRRRRRRRRRRRRRRRRRRDTSTT




0@00
\

00000000

A One Qubit System

Part 1: Defining Qubits in Python Part 2: Defining Quantum Gates in Python and Applying Them to Qubits Part 3: Defining a Superposi

000000000

P We will start our study of quantum computing by considering a
one qubit system.

P This system can be represented as being in one of two states:

0
P We will go into physical implementations of quantum computers

near the end of the course, but for now let’s consider the qubit to
z-direction.

be an electron and we are measuring and altering the spin in the

Qubits, Superposition, and Introduction to Qiskit




Part 1: Defining Qubits in Python Part 2: Defining Quantum Gates in Python and Applying Them to Qubits Part 3: Defining a Superposi
0000 00000000
\

000000000

Performing Calculations with One Qubit

P A one-qubit, two-state system has limited real world applications,

but does allows us to get use to quantum computing with a simple
system

P For a classical analog:
P Bit: 0 Qubit: | 1)
P Bit: 1 Qubit: | )

Qubits, Superposition, and Introduction to Qiskit




Part 1: Defining Qubits in Python Part 2: Defining Quantum Gates in Python and Applying Them to Qubits Part 3: Defining a Superposi
000® 00000000 000000000
\ ,

Defining the Two Qubits in Python
# Import Numpy for linear algebra
import numpy as np

# Define the two possible states of a single qubit
up = np.array([1,0])
down = np.array([0,1])

# Define a down qubit
qubit = down

print ("Example Qubit:")
print (qubit)

See the Jupyter notebook associated with this lecture. . P

: :
Qubits, Superposition, and Introduction to Qiskit
R R O R R R R R R R R R R R R R R R R R R R R R R R R R R RRRRRRRRRRRRRRRRRRRRRRRRRRRRDTSTT




R R RRRRRRRRRRRRRRRRBRRRRRRRRRRRRRRRRRRRRRRRRRBRBRBRRBRBRRRERBEERREIESZSEEEDDE.
Part 1: Defining Qubits in Python Part 2: Defining Quantum Gates in Python and Applying Them to Qubits Part 3: Defining a Superposi
0000 90000000 000000000

\

Part 2: Defining Quantum Gates in Python and
Applying Them to Qubits

=} & = Q¥
:

Qubits, Superposition, and Introduction to Qiskit
R R O R R R R R R R R R R R R R R R R R R R R R R R R R R RRRRRRRRRRRRRRRRRRRRRRRRRRRRDTSTT




0000
\

O®000000

What are Quantum Gates?

Part 1: Defining Qubits in Python Part 2: Defining Quantum Gates in Python and Applying Them to Qubits Part 3: Defining a Superposi

000000000

P For a single qubit, a gate is a 2x2 matrix that manipulates a qubit
P Like an operator BUT a gate does not collapse a superposition
(there is no measurement being performed)

P Constraint: the matrices must be unitary (UTU = 1)
P Quantum gates must be reversible

Qubits, Superposition, and Introduction to Qiskit




000
\

OO®00000

NOT Gate

Part 1: Defining Qubits in Python Part 2: Defining Quantum Gates in Python and Applying Them to Qubits Part 3: Defining a Superposi
000000000

01
=i
P Function: Converts a qubit into the opposite qubit.
> X[ =[] and X||)=]1)
P In general: X g} = b
P Think of this in terms of superposition

Qubits, Superposition, and Introduction to Qiskit

A




000
\

0000000
/ Gate

Part 1: Defining Qubits in Python Part 2: Defining Quantum Gates in Python and Applying Them to Qubits Part 3: Defining a Superposi
000000000

1
Z_O

0
-1

P Function: Leaves | 1) unchanged and converts | |) to —| |).

Qubits, Superposition, and Introduction to Qiskit

A




000
\

00008000

Hadamard Gate

Part 1: Defining Qubits in Python Part 2: Defining Quantum Gates in Python and Applying Them to Qubits Part 3: Defining a Superposi

000000000

1 (1 1
=g )
P Question: What is the purpose of the -17?
P Function: Converts both | 1) and | |) into states which are
halfway between | 1) and | |)
_[1/v2
> 1) = |1V
_[1/v2
> )= |

Qubits, Superposition, and Introduction to Qiskit

A




Part 1: Defining Qubits in Python Part 2: Defining Quantum Gates in Python and Applying Them to Qubits Part 3: Defining a Superposi
0000 00000800 000000000
\

Gate Operations in Python

# Define the NOT gate, the Z gate, and the Hadamard gate
= np.array([[0,1],[1,0]11)

np.array([[1,0],[0,-1]1)
(1/np.sqrt(2))#*np.array([[1,1],[1,-1]11)

X
Z
H

# Check that each gate is unitary
print ("X Unitary?")

print (X.TeX)

print("Z Unitary?")

print (Z.T0Z)

print ("H Unitary?")

print (H.TGH)

u]
Q
1l
[
it

Ay
\

:
Qubits, Superposition, and Introduction to Qiskit

15




Part 1: Defining Qubits in Python Part 2: Defining Quantum Gates in Python and Applying Them to Qubits Part 3: Defining a Superposi

0000 00000080 000000000
\

Gate Operations in Python (Cont.)

# Apply the NOT gate to each single qubit
print ("X and up")

print (XGup)

print ("X and down")

print (X@down)

# Apply the Z gate to each single qubit
print("Z and up")

print (ZQup)

print("Z and down")

print (Z0down)

u]
Q
1l
[
it

Ay
\

:
Qubits, Superposition, and Introduction to Qiskit

15




Part 1: Defining Qubits in Python Part 2: Defining Quantum Gates in Python and Applying Them to Qubits Part 3: Defining a Superposi
0000 0000000e 000000000
\

Gate Operations in Python (Cont.)

# Apply the Hadamard gate to each single qubit
print("H and up")

print (HOup)

print ("H and down")

print (Hodown)

See the Jupyter notebook associated with this lecture.

=} & = Q¥
i :
Qubits, Superposition, and Introduction to Qiskit
R R O R R R R R R R R R R R R R R R R R R R R R R R R R R RRRRRRRRRRRRRRRRRRRRRRRRRRRRDTSTT




R R RRRRRRRRRRRRRRRRBRRRRRRRRRRRRRRRRRRRRRRRRRBRBRBRRBRBRRRERBEERREIESZSEEEDDE.
Part 1: Defining Qubits in Python Part 2: Defining Quantum Gates in Python and Applying Them to Qubits Part 3: Defining a Superposi
0000 00000000 900000000

\

Part 3: Defining a Superposition of Qubits in
Python

=} & = Q¥
'

Qubits, Superposition, and Introduction to Qiskit
R R O R R R R R R R R R R R R R R R R R R R R R R R R R R RRRRRRRRRRRRRRRRRRRRRRRRRRRRDTSTT




Part 1: Defining Qubits in Python Part 2: Defining Quantum Gates in Python and Applying Them to Qubits Part 3: Defining a Superposi

0000 00000000 0O®0000000
\

Superposition in Python

# Define a qubit using our previous computational basis

# Remember that in Python, j takes the place of the imaginary
# number i

qubit = 3*up + 4j*down

# Print the qubit and its norm

# Note that the qubit is not normalized

print ("Superposition Qubit and Magnitude")

print (qubit)

print(np.linalg.norm(qubit))

u]
Q
1l
[
it

Ay
\

:
Qubits, Superposition, and Introduction to Qiskit

15




Part 1: Defining Qubits in Python Part 2: Defining Quantum Gates in Python and Applying Them to Qubits Part 3: Defining a Superposi

0000

00000000

00O®000000

Superposition in Python (Cont.)

# Normalize the qubit
mag = np.linalg.norm(qubit)
qubit = qubit/mag

# Print the normalized qubit and its new magnitude
print ("Normalized Superposition Qubit and Magnitude")
print (qubit)

print(np.linalg.norm(qubit))

See the Jupyter notebook associated with this lecture.

] = =

A

Qubits, Superposition, and Introduction to Qiskit

15




Part 1: Defining Qubits in Python Part 2: Defining Quantum Gates in Python and Applying Them to Qubits Part 3: Defining a Superposi
0000 00000000 000®00000
,

Superposition in Python (Cont.)

# Find the probability that upon measurement, an up result is

# obtained

prob_up = np.dot(np.conjugate(up),qubit)*\
np.conjugate(np.dot (np.conjugate (up) ,qubit))

# Find the probability that upon measurement, an down result i

# obtained

prob_down = np.dot(np.conjugate(down),qubit)*\
np.conjugate (np.dot (np.conjugate (down) ,qubit))

# Print the probability of obtaining an up result, a down resu
# and ensure that the total probability is 1

print ("Probability of obtaining up, probability of obtaining d
print (prob_up, prob_down, prob_up+prob_down)7 H...

Qubits, Superposition, and Introduction to Qiskit
R R O R R R R R R R R R R R R R R R R R R R R R R R R R R RRRRRRRRRRRRRRRRRRRRRRRRRRRRDTSTT




0000
\

00000000

0O000®0000

Part 1: Defining Qubits in Python Part 2: Defining Quantum Gates in Python and Applying Them to Qubits Part 3: Defining a Superposi
A New Computational Basis

+) = (|T>+|i>)

%I

) =

(=19

=} & = Q¥
'

Qubits, Superposition, and Introduction to Qiskit
R R O R R R R R R R R R R R R R R R R R R R R R R R R R R RRRRRRRRRRRRRRRRRRRRRRRRRRRRDTSTT

Sl




000
\

00000000

New Basis in Python

Part 1: Defining Qubits in Python Part 2: Defining Quantum Gates in Python and Applying Them to Qubits Part 3: Defining a Superposi

000008000
plus

# ensure that it is normalized

(up + down)/np.sqrt(2)

# Define the first state of our new computational basis and
print("+ qubit and magnitude")
print (plus)

=} & = Q¥
:

Qubits, Superposition, and Introduction to Qiskit
R R O R R R R R R R R R R R R R R R R R R R R R R R R R R RRRRRRRRRRRRRRRRRRRRRRRRRRRRDTSTT

print(np.linalg.norm(plus))




000
\

00000000

New Basis in Python (Cont.)

Part 1: Defining Qubits in Python Part 2: Defining Quantum Gates in Python and Applying Them to Qubits Part 3: Defining a Superposi
000000800
minus =

# ensure that it is normalized

(up - down)/np.sqrt(2)

# Define the second state of our new computational basis and
print("- qubit and magnitude")
print (minus)

=} & = Q¥
:

Qubits, Superposition, and Introduction to Qiskit
R R O R R R R R R R R R R R R R R R R R R R R R R R R R R RRRRRRRRRRRRRRRRRRRRRRRRRRRRDTSTT

print(np.linalg.norm(minus))




0000
\

00000000

Part 1: Defining Qubits in Python Part 2: Defining Quantum Gates in Python and Applying Them to Qubits Part 3: Defining a Superposi

000000080

Creating the New Basis on a Quantum Computer

P All qubits start out as | 1), can be converted to | ) with a NOT
gate

P Question: Can we create the |+) and |—) basis using our original
basis (| ) and | |)) and some number of quantum gates?

o & = = = DA
:

Qubits, Superposition, and Introduction to Qiskit
R R O R R R R R R R R R R R R R R R R R R R R R R R R R R RRRRRRRRRRRRRRRRRRRRRRRRRRRRDTSTT




000
\

00000000

Hadamard Gate!

Part 1: Defining Qubits in Python Part 2: Defining Quantum Gates in Python and Applying Them to Qubits Part 3: Defining a Superposi

1
lez[w§ -

Vval = 25al + 1) = Fum+1
no-[4f1)-:

1 0
= o] -
print (HOup == plus)
print (Hedown == minus)

1
=7

V2
# Check that + and - can be built with up, down, and H

(=19

o & = = 2N
:

Qubits, Superposition, and Introduction to Qiskit
R R O R R R R R R R R R R R R R R R R R R R R R R R R R R RRRRRRRRRRRRRRRRRRRRRRRRRRRRDTSTT




R R RRRRRRRRRRRRRRRRBRRRRRRRRRRRRRRRRRRRRRRRRRBRBRBRRBRBRRRERBEERREIESZSEEEDDE.
Part 1: Defining Qubits in Python Part 2: Defining Quantum Gates in Python and Applying Them to Qubits Part 3: Defining a Superposi
0000 00000000 000000000

\

Part 4

Introduction to Qiskit and Drawing
Quantum Circuits

=} & = Q¥
'

Qubits, Superposition, and Introduction to Qiskit
R R O R R R R R R R R R R R R R R R R R R R R R R R R R R RRRRRRRRRRRRRRRRRRRRRRRRRRRRDTSTT




0000
\

00000000

Part 1: Defining Qubits in Python Part 2: Defining Quantum Gates in Python and Applying Them to Qubits Part 3: Defining a Superposi
Qiskit

000000000

computer

P IBM developed Python library for simulating a quantum computer
P Can also use it to run a quantum circuit on a real IBM quantum

WARNING: IBM changed the syntax of Qiskit recently so many

sources older than this year have code which will not run (or will not

o & = = = DA
:

Qubits, Superposition, and Introduction to Qiskit
R R O R R R R R R R R R R R R R R R R R R R R R R R R R R RRRRRRRRRRRRRRRRRRRRRRRRRRRRDTSTT

run correctly). Be careful which resources you are taking code from.




Part 1: Defining Qubits in Python Part 2: Defining Quantum Gates in Python and Applying Them to Qubits Part 3: Defining a Superposi
0000

00000000 000000000
\

Drawing One Qubit Circuits

P The qubit is represented as a single horizontal line
P> Gates are represented with boxes on that line (in the order they

are applied) with a symbol representing the gate (X for NOT, Z
for Z, H for Hadamard)

P An “M gate” represents measuring the state of the circuit.

o & = = 2N
: :
Qubits, Superposition, and Introduction to Qiskit




R R RRRRRRRRRRRRRRRRBRRRRRRRRRRRRRRRRRRRRRRRRRBRBRBRRBRBRRRERBEERREIESZSEEEDDE.
Part 1: Defining Qubits in Python Part 2: Defining Quantum Gates in Python and Applying Them to Qubits Part 3: Defining a Superposi
0000 00000000 000000000

\

Part 5: Introduction to One Qubit Quantum
Circuits with Qiskit

=} & = Q¥
'

Qubits, Superposition, and Introduction to Qiskit
R R O R R R R R R R R R R R R R R R R R R R R R R R R R R RRRRRRRRRRRRRRRRRRRRRRRRRRRRDTSTT




Part 1: Defining Qubits in Python Part 2: Defining Quantum Gates in Python and Applying Them to Qubits Part 3: Defining a Superposi

0000 00000000 000000000
\

Relevant Qiskit Imports

# Needed to set up the quantum circuit

from qiskit import QuantumCircuit, ClassicalRegister, QuantumR
# Needed to simulate running a quantum computer

from qiskit_aer import AerSimulator

# Neded to visualize the results of running a quantum computer
from qiskit.visualization import plot_histogram

P Note that only the first import is needed to create a quantum
circuit, the second two are used to run the quantum circuit

u]
Q
1l
[
it

Ay
\

Qubits, Superposition, and Introduction to Qiskit




000
\

00000000

Simulate One Qubit

Part 1: Defining Qubits in Python Part 2: Defining Quantum Gates in Python and Applying Them to Qubits Part 3: Defining a Superposi

000000000

= QuantumRegister (1)

#
q
#
©
#
#

!
creates a Quantum register of 1 qubit

creates a classical register of 1 bit
= ClassicalRegister (1)
to a classical bit

creates a quantum circuit that maps the result of a qubit
gc = QuantumCircuit(q, c)
qgc.measure(q, c)

=} & = Q¥
:

Qubits, Superposition, and Introduction to Qiskit
R R O R R R R R R R R R R R R R R R R R R R R R R R R R R RRRRRRRRRRRRRRRRRRRRRRRRRRRRDTSTT

print(gc.draw())

# measure the current quantum circuit and draw a diagram




Part 1: Defining Qubits in Python Part 2: Defining Quantum Gates in Python and Applying Them to Qubits Part 3: Defining a Superposi
0000

00000000 000000000
\

Simulate One Qubit (Cont.)

# Run the quantum circuit on a simulated quantum computer 1024
simulator = AerSimulator()

results = simulator.run(qc).result().get_counts()

# Create a histogram of the results

plot_histogram(results)

P All Qiskit qubits start in the | 1) (0) state (notice there will be a
slight bias to this state later)

o & = 2N
: :
Qubits, Superposition, and Introduction to Qiskit




Part 1: Defining Qubits in Python Part 2: Defining Quantum Gates in Python and Applying Them to Qubits Part 3: Defining a Superposi
0000 00000000 000000000
!

Add a NOT Gate

# Create the same quantum circuit as before, but add a NOT gat
# measuring

q = QuantumRegister (1)

c = ClassicalRegister(1)
gc = QuantumCircuit(q, c)
qc.x(0)

gc.measure(q, c)

print(qc.draw())

simulator = AerSimulator()

results = simulator.run(qc).result().get_counts()
plot_histogram(results)

P Predicted result?

u]
Q
1l
[
it

Ay
\

Qubits, Superposition, and Introduction to Qiskit




Part 1: Defining Qubits in Python Part 2: Defining Quantum Gates in Python and Applying Them to Qubits Part 3: Defining a Superposi

0000 00000000

000000000

Add a Z Gate

# Replace the NOT gate with a Z gate

q = QuantumRegister (1)

c = ClassicalRegister(1)

gc = QuantumCircuit(q, c)

qc.z(0)

qc.measure(q, c)

print(qc.draw())

simulator = AerSimulator()

results = simulator.run(qc).result().get_counts()
plot_histogram(results)

P Predicted Result?

A

Qubits, Superposition, and Introduction to Qiskit




Part 1: Defining Qubits in Python Part 2: Defining Quantum Gates in Python and Applying Them to Qubits Part 3: Defining a Superposi

0000 00000000 000000000
\

Add a Hadamard Gate

# Replace the Z gate with a Hadamard gate

q = QuantumRegister (1)

¢ = ClassicalRegister(1)

gc = QuantumCircuit(q, c)

qc.h(0)

qc.measure(q, c)

print(qc.draw())

simulator = AerSimulator()

results = simulator.run(qc).result().get_counts()
plot_histogram(results)

P Predicted Result?
P What state have we made?

Qubits, Superposition, and Introduction to Qiskit




R R RRRRRRRRRRRRRRRRBRRRRRRRRRRRRRRRRRRRRRRRRRBRBRBRRBRBRRRERBEERREIESZSEEEDDE.
Part 1: Defining Qubits in Python Part 2: Defining Quantum Gates in Python and Applying Them to Qubits Part 3: Defining a Superposi
0000 00000000 000000000

\

What code could you use to create |—)?

=} & = Q¥
'

Qubits, Superposition, and Introduction to Qiskit
R R O R R R R R R R R R R R R R R R R R R R R R R R R R R RRRRRRRRRRRRRRRRRRRRRRRRRRRRDTSTT




000
\

00000000

Part 1: Defining Qubits in Python Part 2: Defining Quantum Gates in Python and Applying Them to Qubits Part 3: Defining a Superposi
000000000

Why are we not running on a real quantum computer?

» Quantum Noise and Wait Times

=} & = Q¥
:

Qubits, Superposition, and Introduction to Qiskit
R R O R R R R R R R R R R R R R R R R R R R R R R R R R R RRRRRRRRRRRRRRRRRRRRRRRRRRRRDTSTT

P We will experiment with both simulate quantum noise and running
better understanding!

on real quantum computers later in the semester once we have a




000
\

00000000

Part 1: Defining Qubits in Python Part 2: Defining Quantum Gates in Python and Applying Them to Qubits Part 3: Defining a Superposi
000000000

Project: Create a Quantum Coin Flipper.

'
P Hint: to simulate the qubit once use
results =

'
P It needs to return “Heads” or “Tails”

outcomes.

simulator.run(qc, shots=1).result().get_counts()
P Note that in the previous codes results is a dictionary of all

Qubits, Superposition, and Introduction to Qiskit

A




	Part 1: Defining Qubits in Python
	Part 2: Defining Quantum Gates in Python and Applying Them to Qubits
	Part 3: Defining a Superposition of Qubits in Python
	Part 4: Introduction to Qiskit and Drawing Quantum Circuits
	Part 5: Introduction to One Qubit Quantum Circuits with Qiskit
	What code could you use to create |-\rangle?

