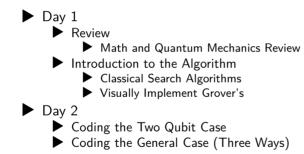
Grover's Search Algorithm

Julie Butler

Outline



Review

▲ロト ▲ □ ト ▲ 三 ト ▲ 三 三 - の へ ()

Identity Matrix

$$\mathbf{I} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

The identity matrix shown above is for 4x4 matrices, general pattern extends to matrices of all size
 1's on main diagonal, 0's everywhere else

States are Vectors, Gates are Matrices

- Quantum mechanical states are represented by vectors, describe the entire system
 - One qubit states are length 2, two qubit states are length 2, n qubit states are 2ⁿ
- Quantum computing gates are represented by unitary matrices
 - One qubit gates are 2x2, two qubit gates are 4x4, n qubit gates are $2^n x 2^n$
- Note that many multi-qubit gates involve one or more control qubits and one or more target qubits:
 - Fredkin Gate (one control, two targets)
 - Three-Qubit X Gate (two controls, one target)

Statevectors Are Made of Basis States

Consider the following state vector: $|\psi\rangle = \frac{1}{2}|00\rangle + \frac{1}{2}|01\rangle + \frac{1}{2}|10\rangle + \frac{1}{2}|11\rangle$

• The amplitude of the $|00\rangle$ state is $\frac{1}{2}$

- The probability of measuring $|\psi\rangle$ and obtaining $|00\rangle$ is $|\frac{1}{2}|^2 = \frac{1}{4}$
- Consider the following state vector: $|\psi\rangle = \frac{-1}{2}|00\rangle + \frac{1}{2}|01\rangle + \frac{1}{2}|10\rangle + \frac{1}{2}|11\rangle$
- The amplitude of the $|00\rangle$ state is $\frac{-1}{2}$
- The probability of measuring $|\psi\rangle$ and obtaining $|00\rangle$ is $|\frac{-1}{2}|^2 = \frac{1}{4}$

Define Multiple Gate Result Through Matrix Multiplication

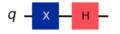


Figure 1: One Qubit Circuit with Two Gates

- Expected Output?
- Now show it one gate at a time.

Image: A math a math

Sar

э

Now show it with a combination gate

$$X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \quad H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

Overlap of Wavefunctions

- ► For an inner product where one of the states is a statevector and the other state is a basis state, the calculation is called an overlap
 - It determines the portion of the statevector in the direction of the basis vector

Example: Consider the following basis in Cartesian coordinates

$$|x\rangle = \begin{bmatrix} 1\\ 0 \end{bmatrix} \quad |y\rangle = \begin{bmatrix} 0\\ 1 \end{bmatrix} \quad |\phi\rangle = \begin{bmatrix} 3\\ 4 \end{bmatrix}$$

Then $\langle y|\phi\rangle = 4$ which is the overlap between $|y\rangle$ and $|\phi\rangle$

Outer Product

- An outer product takes two vectors and creates a matrix (an inner product takes two vectors and creates a scalar).
- Consider the following two vectors of length 3:

$$|x\rangle = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} \quad |y\rangle = \begin{bmatrix} y_0 \\ y_1 \\ y_2 \end{bmatrix}$$

The outer product between these two vectors, represented as $|x
angle\langle y|$ is

$$|x\rangle\langle y| = \begin{bmatrix} x_0y_0^* & x_0y_1^* & x_0y_2^* \\ x_1y_0^* & x_1y_1^* & x_1y_2^* \\ x_2y_0^* & x_2y_1^* & x_2y_2^* \end{bmatrix}$$

Completeness Relation

• If the states $|x_i\rangle$ form a complete basis then:

$$\sum_i |x_i\rangle \langle x_i| = \mathbf{I}$$

Projection Operator

- A useful application of the outer product is in the construction of projection operators.
- The projection operator projects out a specific component of a of a state related to the basis state that was used to the projection operator.
- Example: Consider the following basis in Cartesian coordinates

$$|x\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad |y\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \quad |\phi\rangle = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$$

 $\blacktriangleright |y\rangle\langle y|$ is the projection operator for $|y\rangle,$ so

$$|y\rangle\langle y|\phi\rangle = |y\rangle 4 = 4|y\rangle = \begin{bmatrix} 0\\ 4 \end{bmatrix}$$

Introduction

<ロ> < 団> < 団> < 三> < 三> < 三</p>

Classical Linear Search

- If the data is sorted there are a variety of algorithms which have good performance
- ▶ If the data is unsorted you are left essentially with brute force
 - Average performance is $\frac{N}{2}$ searches
 - Worst case is N searches
- **Computational Performance**: O(N)

A New Way of Thinking of the Algorithm

- Standard algorithm returns the index of the wanted element
- Consider instead marking the indices corresponding to the wanted element

```
def linear_search_version_2 (my_list, element):
    length = len(my_list)
    results = np.zeros(length)
    for i in range(length):
        if my_list[i] == element:
            results[i] = 1
    return results
```

Reflections

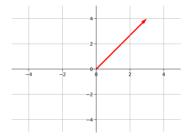


Figure 2: Reflection About the X Axis

Reflections

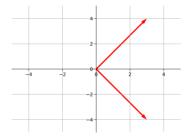


Figure 3: Reflection About the X Axis

Reflections

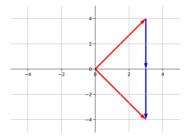


Figure 4: Reflection About the X Axis

< ロ > < 団 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$\begin{bmatrix} 3\\4 \end{bmatrix} - \begin{bmatrix} 0\\4 \end{bmatrix} - \begin{bmatrix} 0\\4 \end{bmatrix} = \begin{bmatrix} 3\\-4 \end{bmatrix}$$
$$\begin{bmatrix} 3\\4 \end{bmatrix} - 2\begin{bmatrix} 0\\4 \end{bmatrix} = \begin{bmatrix} 3\\-4 \end{bmatrix}$$

▶ But consider the following representation:

$$|x
angle = egin{bmatrix} 1 \ 0 \end{bmatrix} \quad |y
angle = egin{bmatrix} 0 \ 1 \end{bmatrix} \quad |\phi
angle = 3|x
angle + 4|y
angle$$

► Then we can represent the reflection as:

$$ref_x(|\phi\rangle)=|\phi\rangle-4|y\rangle-4|y\rangle=|\phi\rangle-2(4|y\rangle)$$

 \blacktriangleright But remember that from our discussion of overlaps, $\langle y|\phi
angle=4$, so

$$ref_x(|\phi\rangle) = |\phi\rangle - 2|y\rangle \langle y|\phi\rangle = (\mathbf{I} - 2|y\rangle \langle y|)|\phi\rangle$$

Where we are reflecting around the x-axis, so y is the other axis

For a reflection in more than two-dimensional space we would need to subtract the outer products of all other basis vectors besides the axis we are rotating around:

$$ref_x(|\phi\rangle) = (\mathbf{I}-2|y\rangle\langle y|-2|z\rangle\langle z|)|\phi\rangle$$

This can be tedious for many basis vectors, but remember that the identity matrix can be represented as a sum of outer products of all basis vectors. So in 3D Cartesian:

$$\begin{split} ref_x(|\phi\rangle) &= (\mathbf{I} - 2|y\rangle\langle y| - 2|z\rangle\langle z|)|\phi\rangle \\ &= (|x\rangle\langle x| + |y\rangle\langle y| + |z\rangle\langle z| - 2|y\rangle\langle y| - 2|z\rangle\langle z|)|\phi\rangle \\ &= (|x\rangle\langle x| - |y\rangle\langle y| - |z\rangle\langle z|)|\phi\rangle \\ &= (|x\rangle\langle x| - |y\rangle\langle y| - |z\rangle\langle z|)|\phi\rangle \end{split}$$

Now add and subtract by the outer product of the axis we are rotating around:

$$\begin{split} ref_x &= (|x\rangle\langle x| + |x\rangle\langle x| - |x\rangle\langle x| - |y\rangle\langle y| - |z\rangle\langle z|)|\phi\rangle \\ &= (2|x\rangle\langle x| - (|x\rangle\langle x| + |y\rangle\langle y| + |z\rangle\langle z|)|\phi\rangle \\ &= (2|x\rangle\langle x| - \mathbf{I})|\phi\rangle \end{split}$$

• Generalization: To rotate a statevector $|\phi\rangle$ around any axis k:

$$ref_k(|\phi\rangle) = (2|k\rangle\langle k|-\mathbf{I})|\phi\rangle$$

< ロ > < 同 > < 三 > < 三 > < Sar 3

Programming Grover's Algorithm

Parts of Grover's Algorithm

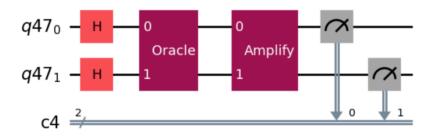


Figure 5: Grover's Algorithm

Hadamard Gates

First step is to apply a Hadamard gate to every qubit, creating a superposition of every possible state

$$H^{\otimes n}|0^n\rangle = \frac{1}{\sqrt{N}}\sum_{x\in\{0,1\}^n}|x\rangle = |\phi\rangle$$

Oracle

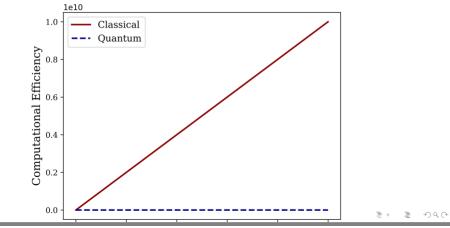
- The goal of the algorithm is to flip the sign on the amplitude of the desired state(s)
 - Grover's can be used to find more than one desired solution at a time
- The oracle should flip the sign of the amplitude for all desired states but leave all other amplitudes unchanged

Amplification Algorithm (Diffusion Algorithm)

- A negative amplitude gives the same probability as a positive amplitude, so we need another step in the algorithm
- The amplification algorithm (amplitude amplification algorithm or diffusion algorithm) increase the amplitude on the marked states but decreases the amplitude on the unmarked states
- NOTE the oracle and amplification algorithm may have to be applied more than once to achieve significant separation in amplitudes between the marked and unmarked states.

Programming Grover's Algorithm

O(N) vs. $O(\sqrt{N})$ Run Times



Visual Walkthrough

- In the next few slides we will visually walkthrough what Grover's algorithm is doing as it processes a system.
- The basic steps are to negate the amplitude of the desired state (oracle) and then reflect the entire state around the mean amplitude (amplification)

Step 1: Starting Point for Two Qubits

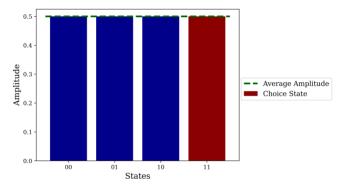


Figure 7: Grover's Algorithm Visualization Step 1

Programming Grover's Algorithm

Step 2: Negate Amplitude of Desired State

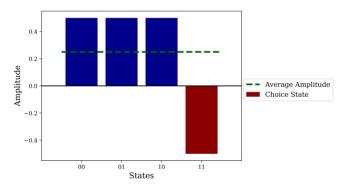


Figure 8: Grover's Algorithm Visualization Step 2

Step 3: Reflect Around Mean Amplitude

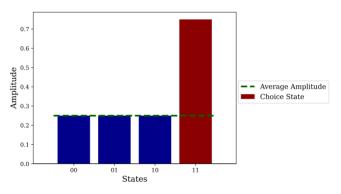


Figure 9: Grover's Algorithm Visualization Step 3

Programming Grover's Algorithm

Step 4: Negate Amplitude of Desired State

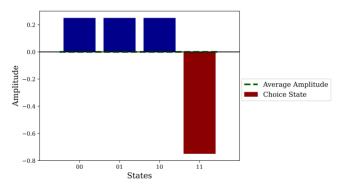


Figure 10: Grover's Algorithm Visualization Step 4

Step 5: Reflect Around Mean Amplitude

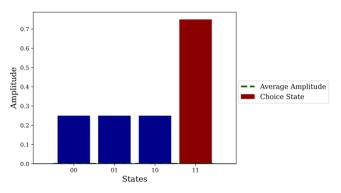
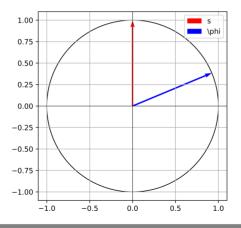


Figure 11: Grover's Algorithm Visualization Step 5

Programming Grover's Algorithm

How Many Times To Run \longrightarrow Grover's Circle

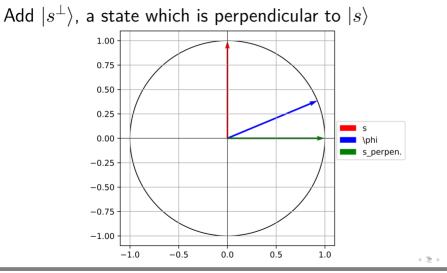


- 4 声 ト 一 声 - うくぐ

 Programming Grover's Algorithm

Э

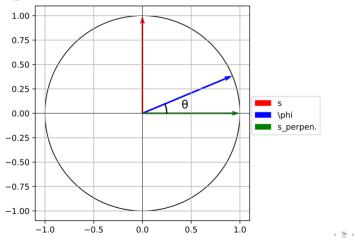
590



Э

590

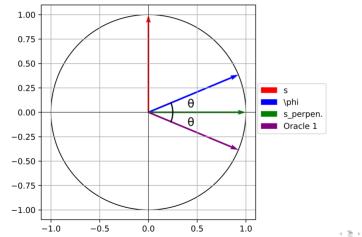
Note the angle θ



Э

Sac

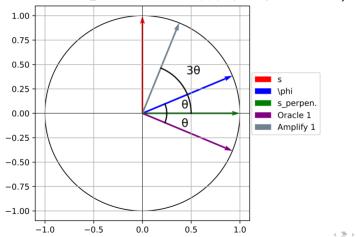
Negate the component of $|\phi\rangle$ that comes from $|s\rangle$ (Oracle)



Э

Sac

Reflect around the original value of $|\phi\rangle$ (Amplification)

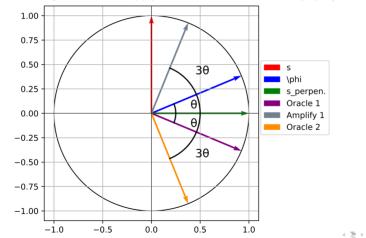


Programming Grover's Algorithm

Э

Sac

Negate the component of $|\phi\rangle$ that comes from $|s\rangle$ (Oracle)



Reflect around the original value of $|\phi\rangle$ (Amplification)



◆ ≡ ◆ ≡ ◆ � ◆ ◆

How Many Times To Run \longrightarrow Grover's Circle

Now some trigonometry

$$\begin{split} \sin\theta &= \frac{1/\sqrt{N}}{1} \longrightarrow \langle s | \phi \rangle = \frac{1}{\sqrt{N}}, \; |\langle \phi | \phi \rangle|^2 = 1 \\ \theta &= \arcsin(\frac{1}{\sqrt{N}}) \approx \frac{1}{\sqrt{N}} \\ (2t+1)\theta &= \frac{\pi}{2} \longrightarrow t = \frac{\pi}{4}\sqrt{N} - \frac{1}{2} \end{split}$$

<ロ> < 団> < 団> < 三> < 三</p>

How Many Times To Run \longrightarrow Grover's Circle

▶ In general the algorithm will run $\frac{\pi}{4}\sqrt{\frac{N}{M}}$ times where there are N items in the search space and the algorithm is looking for M different items.

Typically this equation is "floored" to avoid overshooting

Programming Grover's Algorithm

<ロ> < 団> < 団> < 三> < 三</p>

Two Qubit Case

▶ Let's consider a two-qubit Grover's algorithm ▶ The "good state" is |11⟩ ▶ The other states are the "bad states"

What Could the Oracle Be?

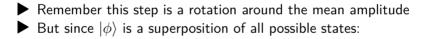
▶ General form: $U_s = \mathbf{I} - |s\rangle\langle s|$

• What gate or combination of a gates would turn $|11\rangle \rightarrow -|11\rangle$ but leave all other states unchanged?

Controlled Z!

What Could the Amplification Be?

$$U_d=2|\phi\rangle\langle\phi|-\mathbf{I}$$



 $H^{\otimes n}(2|0\rangle\langle 0|-\mathbf{I})H^{\otimes n}$

Very similar implementation as the Oracle, same gates will be involved

Amplification Algorithm

- 1. Hadamard to all qubits
- 2. NOT to all qubits
- 3. Multi-controlled-Z where all top qubits are the control and the bottom qubit is the target
- 4. NOT to all qubits
- 5. Hadamard to all qubits

General Case

- The amplification algorithm will remain the same, but what could be a general form for the oracle?
- It must have a multi-controlled-Z gate, only other change is to add leading and post NOT gates if the digit is a zero
- 1. For any digit in the marked string that is a 0, apply a NOT gate to the corresponding qubit.
- 2. Multi-controlled-Z where all top qubits are the control and the bottom qubit is the target
- 3. For any digit in the marked string that is a 0, apply a NOT gate to the corresponding qubit.

To Qiskit!