
Number Theory: Modular Arithmetic, Greatest Common Denominator, Factorization Period Finding and Modular Exponentiation Shor’s Algorithm

Shor’s Factoring Algorithm

Julie Butler

Shor’s Factoring Algorithm

Number Theory: Modular Arithmetic, Greatest Common Denominator, Factorization Period Finding and Modular Exponentiation Shor’s Algorithm

RSA Encryption

▶ Rivest, Shamir, Aldleman (1978)
▶ Internet encryption scheme that uses two large prime numbers to

generate both the public and private keys; could be decrypted via
factorization

▶ Factoring numbers is the most difficult if a number has just two
prime factors of roughly equal length ⟶ considered classically
intractable

▶ Intractable means the only solution is brute-force

Shor’s Factoring Algorithm

Number Theory: Modular Arithmetic, Greatest Common Denominator, Factorization Period Finding and Modular Exponentiation Shor’s Algorithm

Shor’s Factoring Algorithm

▶ Peter Shor, 1994
▶ One of the first quantum algorithms to garner wide-spread interest

in quantum computing
▶ Currently it is not feasible to solve real factorization problems with

Shor’s algorithm, but quantum computers are getting larger every
year

▶ Not only is it an interesting problem, it opens up many security
concerns

▶ Note: This will be our first example of a hybrid classical-quantum
algorithm

Shor’s Factoring Algorithm

Number Theory: Modular Arithmetic, Greatest Common Denominator, Factorization Period Finding and Modular Exponentiation Shor’s Algorithm

Number Theory: Modular Arithmetic, Greatest
Common Denominator, Factorization

Shor’s Factoring Algorithm

Number Theory: Modular Arithmetic, Greatest Common Denominator, Factorization Period Finding and Modular Exponentiation Shor’s Algorithm

Warning

To truly understand how Shor’s algorithm works, you need a good
grasp of number theory, especially as it relates to prime numbers and
factorization. In this lecture we are only going to cover enough
mathematics to be able to implement the algorithm.

Shor’s Factoring Algorithm

Number Theory: Modular Arithmetic, Greatest Common Denominator, Factorization Period Finding and Modular Exponentiation Shor’s Algorithm

Modular Arithmetic

▶ Definition:

𝑎 = 𝑏𝑚𝑜𝑑𝑁 ⟶ 𝑏 = 𝑞𝑁 + 𝑎 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑞

▶ Note that this is similar to but not the same as the %
operator in Python.

Shor’s Factoring Algorithm

Number Theory: Modular Arithmetic, Greatest Common Denominator, Factorization Period Finding and Modular Exponentiation Shor’s Algorithm

Example

▶ 3𝑚𝑜𝑑(12)
▶ −9𝑚𝑜𝑑(12)

Shor’s Factoring Algorithm

Number Theory: Modular Arithmetic, Greatest Common Denominator, Factorization Period Finding and Modular Exponentiation Shor’s Algorithm

Example

▶ 3𝑚𝑜𝑑(12)
▶ 3 = __(12) + __

▶ −9𝑚𝑜𝑑(12)
▶ −9 = __(12) + __

Shor’s Factoring Algorithm

Number Theory: Modular Arithmetic, Greatest Common Denominator, Factorization Period Finding and Modular Exponentiation Shor’s Algorithm

Example

▶ 3𝑚𝑜𝑑(12)
▶ 3 = −1(12) + __

▶ −9𝑚𝑜𝑑(12)
▶ −9 = −2(12) + __

Shor’s Factoring Algorithm

Number Theory: Modular Arithmetic, Greatest Common Denominator, Factorization Period Finding and Modular Exponentiation Shor’s Algorithm

Example

▶ 3𝑚𝑜𝑑(12)
▶ 3 = −1(12) + 15

▶ −9𝑚𝑜𝑑(12)
▶ −9 = −2(12) + 15

▶ Note there are other options here as well.

Shor’s Factoring Algorithm

Number Theory: Modular Arithmetic, Greatest Common Denominator, Factorization Period Finding and Modular Exponentiation Shor’s Algorithm

Example

▶ 3𝑚𝑜𝑑(12) = 15
▶ −9𝑚𝑜𝑑(12) = 15
▶ 3 and -9 are congruent mod 12 since they have the same

modulus
▶ 15, 3, -9 are in the same mod 12 equivalence class since they

can be related through mod 12.

Shor’s Factoring Algorithm

Number Theory: Modular Arithmetic, Greatest Common Denominator, Factorization Period Finding and Modular Exponentiation Shor’s Algorithm

Simple Algebraic Rules Hold for Modular Arithmetic

(𝑥 + 𝑦)𝑚𝑜𝑑𝑁 = 𝑥𝑚𝑜𝑑𝑁 + 𝑦𝑚𝑜𝑑𝑁
(𝑥𝑦)𝑚𝑜𝑑𝑁 = (𝑥𝑚𝑜𝑑𝑁)(𝑦𝑚𝑜𝑑𝑁)

Shor’s Factoring Algorithm

Number Theory: Modular Arithmetic, Greatest Common Denominator, Factorization Period Finding and Modular Exponentiation Shor’s Algorithm

Greatest Common Divisor (GCD)

▶ Any integer N can be represented as a product of prime numbers,
p:

𝑁 = 𝑝1𝑝2𝑝3...𝑝𝜖
▶ Each value, 𝑝𝑖 is called a factor of N

▶ For two integers their greatest common divisor is the largest prime
factor they both share

▶ Example: GCD of 15 and 21?
▶ gcd(15, 21) = ?

Shor’s Factoring Algorithm

Number Theory: Modular Arithmetic, Greatest Common Denominator, Factorization Period Finding and Modular Exponentiation Shor’s Algorithm

Factorization

▶ Assume that an integer N has only two prime factors (p and q).
Then we can write N as:

𝑁 = 𝑝𝑞
▶ The goal of factorization is to find p and q given N

Shor’s Factoring Algorithm

Number Theory: Modular Arithmetic, Greatest Common Denominator, Factorization Period Finding and Modular Exponentiation Shor’s Algorithm

Factorization of N
▶ 𝑁 = 𝑝𝑞, for some p and q of

similar length is equivalent to
stating:

𝑥2 = 1𝑚𝑜𝑑𝑁

1 = 𝑟𝑁 + 𝑥2

0 = 𝑟𝑁 + (𝑥2 − 1)
(𝑥2 − 1) = 0𝑚𝑜𝑑𝑁

(𝑥 + 1)(𝑥 − 1) = 0𝑚𝑜𝑑𝑁

▶ That is to say that say that N
divides evenly (no remainder)
into (𝑥 + 1)(𝑥 − 1)

▶ We can then find the prime
factors if we compute:

▶ p = gcd(N, x+1)
▶ q = gcd(N, x-1)

Shor’s Factoring Algorithm

Number Theory: Modular Arithmetic, Greatest Common Denominator, Factorization Period Finding and Modular Exponentiation Shor’s Algorithm

But what is x?

▶ Classically we have to iterate overall possible numbers OR pick
random numbers

▶ Let’s assume we brute force pick random prime numbers less than
N and see of 𝑥 = 0𝑚𝑜𝑑𝑁

▶ The number of prime numbers less that a given number N is:

𝑁
𝑙𝑛(𝑁)

Shor’s Factoring Algorithm

Number Theory: Modular Arithmetic, Greatest Common Denominator, Factorization Period Finding and Modular Exponentiation Shor’s Algorithm

RSA Encryption Again

▶ Consider the following values:
▶ p,q = (large) random prime numbers
▶ n = pq
▶ r = (p-1)(q-1)
▶ e = 3, 5, 17, or 65537
▶ 𝑑 = 𝑒−1𝑚𝑜𝑑(𝑟)

▶ 𝑑𝑒 = 1𝑚𝑜𝑑(𝑟)
▶ Public key (everyone can see):

▶ e and n
▶ Private key (only members of the transaction can see):

▶ d

Shor’s Factoring Algorithm

Number Theory: Modular Arithmetic, Greatest Common Denominator, Factorization Period Finding and Modular Exponentiation Shor’s Algorithm

RSA Encryption and Decryption

▶ To encrypt some message, m, to pass with RSA encryption (so the
rest of the internet can not read it):

▶ 𝑚𝑒𝑚𝑜𝑑(𝑛)
▶ To decrypt the encrypted message, c (for ciphertext) (so the

receiver of the message can read it):
▶ 𝑐𝑑𝑚𝑜𝑑(𝑛)

Shor’s Factoring Algorithm

Number Theory: Modular Arithmetic, Greatest Common Denominator, Factorization Period Finding and Modular Exponentiation Shor’s Algorithm

Example

▶ Let p = 11, q = 3 (so n = 33), r = (10)(2) = 20, e = 3, and
𝑑 = 3−1𝑚𝑜𝑑(33) = 7.

▶ Let the message to be e = 7.

𝑚𝑒𝑚𝑜𝑑(𝑛) = 73𝑚𝑜𝑑(33) = 343𝑚𝑜𝑑(33) = 13

▶ The encrypted message to be passed along is 13 (ciphertext)

Shor’s Factoring Algorithm

Number Theory: Modular Arithmetic, Greatest Common Denominator, Factorization Period Finding and Modular Exponentiation Shor’s Algorithm

Example Continued

▶ To decrypt on the other side of the transaction:

𝑐𝑑𝑚𝑜𝑑(𝑛) = 137𝑚𝑜𝑑(33) = 62748517𝑚𝑜𝑑(33) = 7

▶ The encryption process does not matter, so it can be public.
Decryption needs to be private so it is only done by the people
who are conducting the transaction

▶ Decryption is based around the private key d, which is based on r,
which is based on the prime factors p,q

▶ So if someone could factor n (which is in the public key) they could
crack the decryption

Shor’s Factoring Algorithm

Number Theory: Modular Arithmetic, Greatest Common Denominator, Factorization Period Finding and Modular Exponentiation Shor’s Algorithm

Consider the case of an RSA using a 6 bit number for n
▶ Not realistic but for demonstration
▶ 𝑠 = 𝑠020 + 𝑠121 + 𝑠222 + 𝑠323 + 𝑠424 + 𝑠525

▶ Assume 𝑠5 is 1, then the number is at least 25 = 32
▶ Then p and q have to be prime numbers smaller than 32 (need to

find just one)
32

𝑙𝑛(32) = 9

▶ Assume 𝑠0 = 𝑠1 = 𝑠2 = 𝑠3 = 𝑠4 = 𝑠5 = 1
63

𝑙𝑛(63) = 15

Shor’s Factoring Algorithm

Number Theory: Modular Arithmetic, Greatest Common Denominator, Factorization Period Finding and Modular Exponentiation Shor’s Algorithm

Consider the case of an RSA using a 1,024 bit number for n

21024

𝑙𝑛(21024) = 1.26𝑥10305

Shor’s Factoring Algorithm

Number Theory: Modular Arithmetic, Greatest Common Denominator, Factorization Period Finding and Modular Exponentiation Shor’s Algorithm

Consider the case of an RSA using a 4,096 bit number for n

24095

𝑙𝑛(24095) = 1.84𝑥101229

Shor’s Factoring Algorithm

Number Theory: Modular Arithmetic, Greatest Common Denominator, Factorization Period Finding and Modular Exponentiation Shor’s Algorithm

Period Finding and Modular Exponentiation

Shor’s Factoring Algorithm

Number Theory: Modular Arithmetic, Greatest Common Denominator, Factorization Period Finding and Modular Exponentiation Shor’s Algorithm

Modular Exponentiation
▶ Consider a = 2 and N = 9. Calculate 𝑎𝑛 = __𝑚𝑜𝑑(𝑁) for

increasing values of 0

20 = __𝑚𝑜𝑑(9)

21 = __𝑚𝑜𝑑(9)
22 = __𝑚𝑜𝑑(9)
23 = __𝑚𝑜𝑑(9)
24 = __𝑚𝑜𝑑(9)
25 = __𝑚𝑜𝑑(9)

Shor’s Factoring Algorithm

Number Theory: Modular Arithmetic, Greatest Common Denominator, Factorization Period Finding and Modular Exponentiation Shor’s Algorithm

Modular Exponentiation
▶ Consider a = 2 and N = 9. Calculate 𝑎𝑛 = __𝑚𝑜𝑑(𝑁) for

increasing values of n

20 = 1𝑚𝑜𝑑(9)

21 = 2𝑚𝑜𝑑(9)
22 = 4𝑚𝑜𝑑(9)
23 = 8𝑚𝑜𝑑(9)
24 = 7𝑚𝑜𝑑(9)
25 = 4𝑚𝑜𝑑(9)

Shor’s Factoring Algorithm

Number Theory: Modular Arithmetic, Greatest Common Denominator, Factorization Period Finding and Modular Exponentiation Shor’s Algorithm

Modular Exponentiation
▶ Consider a = 2 and N = 9. Calculate 𝑎𝑛 = __𝑚𝑜𝑑(𝑁) for

increasing values of n

20 = 1𝑚𝑜𝑑(9) 26 = 1𝑚𝑜𝑑(9)

21 = 2𝑚𝑜𝑑(9) 27 = 2𝑚𝑜𝑑(9)
22 = 4𝑚𝑜𝑑(9) 28 = 4𝑚𝑜𝑑(9)
23 = 8𝑚𝑜𝑑(9) 29 = 8𝑚𝑜𝑑(9)
24 = 7𝑚𝑜𝑑(9) 210 = 7𝑚𝑜𝑑(9)
25 = 4𝑚𝑜𝑑(9) 211 = 4𝑚𝑜𝑑(9)

Shor’s Factoring Algorithm

Number Theory: Modular Arithmetic, Greatest Common Denominator, Factorization Period Finding and Modular Exponentiation Shor’s Algorithm

Modular Exponentiation
▶ Consider a = 2 and N = 9. Calculate 𝑎𝑛 = __𝑚𝑜𝑑(𝑁) for

increasing values of n

20 = 1𝑚𝑜𝑑(9) 26 = 1𝑚𝑜𝑑(9) 212 = 1𝑚𝑜𝑑(9)

21 = 2𝑚𝑜𝑑(9) 27 = 2𝑚𝑜𝑑(9) 213 = 2𝑚𝑜𝑑(9)
22 = 4𝑚𝑜𝑑(9) 28 = 4𝑚𝑜𝑑(9) 214 = 4𝑚𝑜𝑑(9)
23 = 8𝑚𝑜𝑑(9) 29 = 8𝑚𝑜𝑑(9) 215 = 8𝑚𝑜𝑑(9)
24 = 7𝑚𝑜𝑑(9) 210 = 7𝑚𝑜𝑑(9) 216 = 7𝑚𝑜𝑑(9)
25 = 4𝑚𝑜𝑑(9) 211 = 4𝑚𝑜𝑑(9) 217 = 4𝑚𝑜𝑑(9)

Shor’s Factoring Algorithm

Number Theory: Modular Arithmetic, Greatest Common Denominator, Factorization Period Finding and Modular Exponentiation Shor’s Algorithm

Modular Exponentiation and Period Finding

▶ Consider a = 2 and N = 9. Calculate 𝑎𝑛 = __𝑚𝑜𝑑(𝑁) for
increasing values of n

▶ Repeated pattern: 1, 2, 4, 8, 7, 5
▶ The period: r = 6
▶ Period finding is a classically difficult problem BUT:

▶ p = gcd(N, x+1) = gcd(N, 𝑎 𝑟
2 +1)

▶ q = gcd(N, x-1) = gcd(N, 𝑎 𝑟
2 -1)

▶ Finding the period between N and a will allows us to find the
factors of N!

Shor’s Factoring Algorithm

Number Theory: Modular Arithmetic, Greatest Common Denominator, Factorization Period Finding and Modular Exponentiation Shor’s Algorithm

Shor’s Algorithm

Shor’s Factoring Algorithm

Number Theory: Modular Arithmetic, Greatest Common Denominator, Factorization Period Finding and Modular Exponentiation Shor’s Algorithm

Shor’s Algorithm Step 1

▶ If N is the number we wish to factorize, choose an value for a
where:

▶ 1 < 𝑎 < 𝑁
▶ gcd(a,N) = 1

▶ a and N share no common factors

Shor’s Factoring Algorithm

Number Theory: Modular Arithmetic, Greatest Common Denominator, Factorization Period Finding and Modular Exponentiation Shor’s Algorithm

Shor’s Algorithm Step 2
▶ Find the period between a and N, classically hard so use a

quantum algorithm! But how?
▶ Consider the quantum gate 𝑈𝑎,𝑁 which will perform modular

exponentiation:
▶ 𝑈𝑎,𝑁 |𝑥⟩ = |𝑥 𝑎𝑚𝑜𝑑(𝑁)⟩
▶ Transforms the state |𝑥⟩ to the state |𝑥 𝑎𝑚𝑜𝑑(𝑁)⟩

▶ |𝑥⟩ is just a random quantum state, |𝑥 𝑎𝑚𝑜𝑑(𝑁)⟩ is still a
quantum state that is altered by the 𝑈𝑎,𝑁 gate

▶ Note 1: The form and construction of the 𝑈𝑎,𝑁 gate is beyond
the scope of the class. It will be used as a black box gate.

▶ Note 2: 𝑈𝑎,𝑁 can be represented as U in the remaining slides for
brevity

Shor’s Factoring Algorithm

Number Theory: Modular Arithmetic, Greatest Common Denominator, Factorization Period Finding and Modular Exponentiation Shor’s Algorithm

The Modular Exponentiation Gate
▶ Apply the gate multiple times to get powers of a in mod(N)

𝑈0
𝑎,𝑁 |1⟩ = |1𝑚𝑜𝑑(𝑁)⟩

𝑈1
𝑎,𝑁 |1⟩ = |𝑎𝑚𝑜𝑑(𝑁)⟩

𝑈2
𝑎,𝑁 |1⟩ = |𝑎2𝑚𝑜𝑑(𝑁)⟩

𝑈3
𝑎,𝑁 |1⟩ = |𝑎3𝑚𝑜𝑑(𝑁)⟩

...
𝑈𝑟

𝑎,𝑁 |1⟩ = |𝑎𝑟𝑚𝑜𝑑(𝑁)⟩ = |1𝑚𝑜𝑑(𝑁)⟩

Shor’s Factoring Algorithm

Number Theory: Modular Arithmetic, Greatest Common Denominator, Factorization Period Finding and Modular Exponentiation Shor’s Algorithm

Constructing the Statevector
▶ Consider the variable 𝜃𝑠 = 2𝜋𝑖𝑠, where s is an integer, $0�s �r-1:
▶ Then, we can construct the following quantum state:

|𝑢𝑠⟩ = 1√𝑟
𝑟−1
∑
𝑗=0

𝑒−𝑗𝜃𝑠/𝑟|𝑎𝑗𝑚𝑜𝑑(𝑁)⟩

|𝑢𝑠⟩ = 1√𝑟(𝑒−0𝜃𝑠/𝑟|𝑎0𝑚𝑜𝑑(𝑁)⟩

+𝑒−1𝜃𝑠/𝑟|𝑎1𝑚𝑜𝑑(𝑁)⟩ + ...+
𝑒−(𝑟−2)𝜃𝑠/𝑟|𝑎𝑟−2𝑚𝑜𝑑(𝑁)⟩

+𝑒−(𝑟−1)𝜃𝑠/𝑟|𝑎𝑟−1𝑚𝑜𝑑(𝑁)⟩)
Shor’s Factoring Algorithm

Number Theory: Modular Arithmetic, Greatest Common Denominator, Factorization Period Finding and Modular Exponentiation Shor’s Algorithm

Apply the Modular Exponentiation Gate

𝑈|𝑢𝑠⟩ = 1√𝑟(𝑒−0𝜃𝑠/𝑟𝑈|𝑎0𝑚𝑜𝑑(𝑁)⟩

+𝑒−1𝜃𝑠/𝑟𝑈|𝑎1𝑚𝑜𝑑(𝑁)⟩ + ...
+𝑒−(𝑟−2)𝜃𝑠/𝑟𝑈|𝑎𝑟−2𝑚𝑜𝑑(𝑁)⟩
+𝑒−(𝑟−1)𝜃𝑠/𝑟𝑈|𝑎𝑟−1𝑚𝑜𝑑(𝑁)⟩)

Shor’s Factoring Algorithm

Number Theory: Modular Arithmetic, Greatest Common Denominator, Factorization Period Finding and Modular Exponentiation Shor’s Algorithm

Apply the Modular Exponentiation Gate

𝑈|𝑢𝑠⟩ = 1√𝑟(𝑒−0𝜃𝑠/𝑟|𝑎1𝑚𝑜𝑑(𝑁)⟩

+𝑒−1𝜃𝑠/𝑟|𝑎2𝑚𝑜𝑑(𝑁)⟩ + ...
+𝑒−(𝑟−2)𝜃𝑠/𝑟|𝑎𝑟−1𝑚𝑜𝑑(𝑁)⟩
+𝑒−(𝑟−1)𝜃𝑠/𝑟|𝑎𝑟𝑚𝑜𝑑(𝑁)⟩)

Shor’s Factoring Algorithm

Number Theory: Modular Arithmetic, Greatest Common Denominator, Factorization Period Finding and Modular Exponentiation Shor’s Algorithm

Multiply by a Factor

▶ Now multiply the state by 𝑒𝜃𝑠/𝑟𝑒−𝜃𝑠/𝑟 = 1

𝑈|𝑢𝑠⟩ = 𝑒𝜃𝑠/𝑟𝑒−𝜃𝑠/𝑟 1√𝑟(𝑒−0𝜃𝑠/𝑟|𝑎1𝑚𝑜𝑑(𝑁)⟩

+𝑒−1𝜃𝑠/𝑟|𝑎2𝑚𝑜𝑑(𝑁)⟩ + ...
+𝑒−(𝑟−2)𝜃𝑠/𝑟|𝑎𝑟−1𝑚𝑜𝑑(𝑁)⟩
+𝑒−(𝑟−1)𝜃𝑠/𝑟|𝑎𝑟𝑚𝑜𝑑(𝑁)⟩)

Shor’s Factoring Algorithm

Number Theory: Modular Arithmetic, Greatest Common Denominator, Factorization Period Finding and Modular Exponentiation Shor’s Algorithm

Distribute the negative exponent term

𝑈|𝑢𝑠⟩ = 𝑒𝜃𝑠/𝑟 1√𝑟(𝑒−1𝜃𝑠/𝑟|𝑎1𝑚𝑜𝑑(𝑁)⟩

+𝑒−2𝜃𝑠/𝑟|𝑎2𝑚𝑜𝑑(𝑁)⟩ + ...
+𝑒−(𝑟−1)𝜃𝑠/𝑟|𝑎𝑟−1𝑚𝑜𝑑(𝑁)⟩

+𝑒−(𝑟)𝜃𝑠/𝑟|𝑎𝑟𝑚𝑜𝑑(𝑁)⟩)

Shor’s Factoring Algorithm

Number Theory: Modular Arithmetic, Greatest Common Denominator, Factorization Period Finding and Modular Exponentiation Shor’s Algorithm

Redefine the Last Term
▶ BUT note that 𝑒−𝑟𝜃𝑠/𝑟 = 𝑒−0𝜃𝑠/𝑟 and

|𝑎𝑟𝑚𝑜𝑑(𝑁)⟩ = |1𝑚𝑜𝑑(𝑁)⟩ = |𝑎0𝑚𝑜𝑑𝑁⟩

𝑈|𝑢𝑠⟩ = 𝑒𝜃𝑠/𝑟𝑒 1√𝑟(𝑒−1𝜃𝑠/𝑟|𝑎1𝑚𝑜𝑑(𝑁)⟩

+𝑒−2𝜃𝑠/𝑟|𝑎2𝑚𝑜𝑑(𝑁)⟩ + ...
+𝑒−(𝑟−1)𝜃𝑠/𝑟|𝑎𝑟−1𝑚𝑜𝑑(𝑁)⟩

+𝑒−(0)𝜃𝑠/𝑟|𝑎0𝑚𝑜𝑑(𝑁)⟩)
= 𝑒𝜃𝑠/𝑟|𝑢𝑠⟩

Shor’s Factoring Algorithm

Number Theory: Modular Arithmetic, Greatest Common Denominator, Factorization Period Finding and Modular Exponentiation Shor’s Algorithm

Eigenvalue Problem!

𝑈|𝑢𝑠⟩ = 𝑒𝜃𝑠/𝑟|𝑢𝑠⟩

𝑈|𝑢𝑠⟩ = 𝑒2𝜋𝑖(𝑠
𝑟)|𝑢𝑠⟩

▶ Measuring eigenvalues on a quantum computer 𝑙𝑜𝑛𝑔𝑟𝑖𝑔ℎ𝑡𝑎𝑟𝑟𝑜𝑤
quantum phase estimation!

Shor’s Factoring Algorithm

Number Theory: Modular Arithmetic, Greatest Common Denominator, Factorization Period Finding and Modular Exponentiation Shor’s Algorithm

Constructing the Statevector
▶ Remember that 0 ≤ 𝑠 ≤ 𝑟 − 1 so there are r possible values for

|𝑢𝑠⟩
▶ It turns out that the easiest one to construct is a superposition of

all r states:
1√𝑟

𝑟−1
∑
𝑠=0

|𝑢𝑠⟩ = |1𝑚𝑜𝑑(𝑁)⟩ = |1⟩

▶ So we just need to construct the eigenvector qubit of the QPE
algorithm in the |1⟩ state!

▶ Consequence of the superposition: Since the eigenvector qubit
is in a superposition, the eigenvalue is also in a superposition of all
possible s values until measurement ⟶ the measurement collapses
the eigenvalue to one value of s!

Shor’s Factoring Algorithm

Number Theory: Modular Arithmetic, Greatest Common Denominator, Factorization Period Finding and Modular Exponentiation Shor’s Algorithm

Shor’s Algorithm Step 2 REVISED

▶ Construct a QPE algorithm with the 𝑈𝑎,𝑁 and measure the
eigenvalue. If the eigenvalue is 0 (s = 0), then remeasure.

▶ The eigenvalue is 𝑒2𝜋𝑖(𝑠
𝑟) which we can convert into 𝑠

𝑟 .

Shor’s Factoring Algorithm

Number Theory: Modular Arithmetic, Greatest Common Denominator, Factorization Period Finding and Modular Exponentiation Shor’s Algorithm

Shor’s Algorithm Step 3

▶ Convert the decimal approximation of 𝑠
𝑟 to a fraction.

▶ This will be done on a classical computer using a process called
continued fractions

Shor’s Factoring Algorithm

Number Theory: Modular Arithmetic, Greatest Common Denominator, Factorization Period Finding and Modular Exponentiation Shor’s Algorithm

Continued Fractions

▶ Example: Consider the decimal 0.312
▶ 0.312 can be written as 312

1000 which is equivalent to:

0.312 = 1
1000
312

▶ But 1000
312 = 3 + 1000−936

312 = 3 + 64
312 = 3 + 8

39 , so

0.312 = 1
3 + 8

39

Shor’s Factoring Algorithm

Number Theory: Modular Arithmetic, Greatest Common Denominator, Factorization Period Finding and Modular Exponentiation Shor’s Algorithm

Continued Fractions (Cont.)
▶ But that is equivalent to

0.312 = 1
3 + 1

39
8

▶ And here we have 39
8 = 4 + 7

8 , so

0.312 = 1
3 + 1

4+ 7
8

▶ But this is the same as

0.312 = 1
3 + 1

4+ 1
8
7

▶ And 8
7 = 1 + 1

7 , so

0.312 = 1
3 + 1

4+ 1
1+ 1

7

▶ Stop the continued fractions when you get a 1 in the numerator

Shor’s Factoring Algorithm

Number Theory: Modular Arithmetic, Greatest Common Denominator, Factorization Period Finding and Modular Exponentiation Shor’s Algorithm

Continued Fractions (Cont.)

0.312 = 1
3 + 1

4+ 1
1+ 1

7

* Now we can approximate 0.312 as:
▶ 0.312 ≈ 1

3(0.333)
▶ 0.312 ≈ 1

3+1/4(0.307)
▶ 0.312 ≈ 1

3+ 1
4+1/1

(0.312)
▶ When doing this step with Shor’s algorithm, choose the

approximation where r is even and less than N.

Shor’s Factoring Algorithm

Number Theory: Modular Arithmetic, Greatest Common Denominator, Factorization Period Finding and Modular Exponentiation Shor’s Algorithm

Shor’s Algorithm Complete

▶ Step 1: To factor a number, N, choose a number a such that
1 < 𝑎 < 𝑁 and gcd(a,N) = 1

▶ Set up a QPE algorithm with the 𝑈𝑎,𝑁 gate to get a decimal
estimation of 𝑠

𝑟 (quantum step)
▶ Use continued fractions to convert 𝑠

𝑟 to a fraction and obtain r
(classical step)

▶ 𝑔𝑐𝑑(𝑎𝑟/2 − 1, 𝑁) and/or 𝑔𝑐𝑑(𝑎𝑟/2 + 1, 𝑁) are likely the factors of
N. If not, repeat the algorithm.

Shor’s Factoring Algorithm

Number Theory: Modular Arithmetic, Greatest Common Denominator, Factorization Period Finding and Modular Exponentiation Shor’s Algorithm

Shor’s Algorithm in Practice:

▶ Consider N = 15, then p = 3 and q = 5
▶ Step 1: Let a = 7, since 1 < 7 < 15 and gcd(7,15) = 1.
▶ Jupyter Time!

Shor’s Factoring Algorithm

Number Theory: Modular Arithmetic, Greatest Common Denominator, Factorization Period Finding and Modular Exponentiation Shor’s Algorithm

Shor’s Algorithm in Practice

▶ To crack RSA encryptions, need a fault tolerant quantum
computer with millions of qubits

Shor’s Factoring Algorithm

	Number Theory: Modular Arithmetic, Greatest Common Denominator, Factorization
	Period Finding and Modular Exponentiation
	Shor's Algorithm

