Example 2 $H = \pi W \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & a \end{bmatrix} = A = A \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & a \end{bmatrix}$ $B = 4 \begin{bmatrix} 2 & 0 & \overline{6} \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$ The possible creasies of the system are the eigenvolves of the tramiltonian, so using an Eigenvalue Salver We set E,= tw, E==2tw, E3=2tw To find a we need to Find (4) and then take the inter product $|\Psi\rangle = G \begin{bmatrix} -i \\ 3 \end{bmatrix} = G^* \begin{bmatrix} i & 3 - 2i \end{bmatrix}$ $|\Psi\rangle = G^* \begin{bmatrix} i & 3$ a*[i 3 - 2i] a [-i] =1 $a^{*}a \left[i \quad 3 \quad -\partial i \right] \left[\begin{array}{c} -i \\ 3 \\ 3 \\ clsu \quad a^{*}a = |a|^{2} \\ \partial i \\ \partial i \\ \end{array} \right] \xrightarrow{} 1$ $|a|^2 \left[i3 - ai \right] \left[-i7 = 1$ $\begin{aligned} & \left| a\right|^{2} \left(i\left(-i\right) + 3\left(3\right) + -3i\left(2i\right) - 1 \\ & \left| a\right|^{2} \left(i\left(-i\right) + 3\left(3\right) + -3i\left(2i\right) - 1 \\ & \left| a\right|^{2} - 1 \\ & \left| a\right|^{2}$ laiJ

So cur normalized WaveFunction is $|\Psi7 = \frac{1}{\sqrt{10}} \begin{bmatrix} -i \\ 3 \\ ai \end{bmatrix}$ With the Corresponding bra being {VI = 1/54 [i 3 - 2i] $= \frac{1}{14} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} -i \\ 3 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 3 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 3 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 3 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 3 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 3 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 3 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 3 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 3 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 3 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 3 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 3 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 3 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 3 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 3 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 3 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 &$ = $\frac{1}{14}\begin{bmatrix} i & 3 & -2i \end{bmatrix}\begin{bmatrix} 3 \\ -i \\ 4i \end{bmatrix}$ Now take the dot product of the two vectors $= \underbrace{k}_{14} \left(i(35 + 3(-i) - 3i(4i)) \right)$ $= \underbrace{\&}_{14} (8) = \underbrace{\&\&\&}_{14} = \underbrace{4\&}_{7} = \langle \Psi | A | \Psi \rangle$ Now for $\langle \Psi | B | \Psi \rangle$ $\frac{1}{\sqrt{14}} \begin{bmatrix} i & 3 & -3i \end{bmatrix} \mathcal{U} \begin{bmatrix} 2 & 0 & 0 \end{bmatrix} \frac{1}{\sqrt{14}} \begin{bmatrix} -i \\ 3 \\ 2i \end{bmatrix}$ Combine scalars

$$= \underbrace{\mathcal{U}}_{14} \begin{bmatrix} i & 3 & -a_{i} \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ 3 & a_{i} \end{bmatrix} \xrightarrow{4}_{3} \underbrace{\operatorname{second}}_{14} \underbrace{\operatorname{vector}}_{14}$$

$$= \underbrace{\mathcal{U}}_{14} \begin{bmatrix} i & 3 & -a_{i} \end{bmatrix} \begin{bmatrix} -a_{i} \\ a_{i} \\ 3 & 1 \end{bmatrix} \xrightarrow{4}_{14} \underbrace{\operatorname{fuc}}_{14} \underbrace{\operatorname{vectors}}_{14}$$

$$= \underbrace{\mathcal{U}}_{14} (i(-a_{i}) + 3(a_{i}) - 2i(3))$$

$$= \underbrace{\mathcal{U}}_{14} (a_{i}) = \underbrace{\mathcal{A}}_{14} = \underbrace{\mathcal{U}}_{14} = \underbrace{\operatorname{VUB}_{14}}_{7}$$

Since the coefficient in front of the eigenvector that corresponds to the two energy state is $C = -c^2/\sqrt{19}$, then the propability of measuring the energy of the system a softing two is $P(trw) = |C|^2 = \left|-\frac{c}{\sqrt{19}}\right|^2 = -\frac{c}{\sqrt{19}}\left|-\frac{c}{\sqrt{19}}\right| = \frac{1}{14} = P(trw)$